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Preface

Biomolecular computing was invented by Leonard Adleman, who made head-
lines in 1994 demonstrating that DNA – the double-stranded helical molecule
that holds life’s genetic code – could be used to carry out computations. DNA
computing takes advantage of DNA or related molecules for storing infor-
mation and biotechnological operations for manipulating this information.
A DNA computer has extremely dense information storage capacity, pro-
vides tremendous parallelism, and exhibits extraordinary energy efficiency.
Biomolecular computing has an enormous potential for in vitro analysis of
DNA, assembly of nanostructures, and in vivo calculations.

The aim of this book is to introduce the beginner to DNA computing,
an emerging field of nanotechnology based on the hybridization of DNA
molecules. The book grew out of a research cooperation between the authors
and a graduate-level course and several seminars in the master’s program
in Computer Engineering taught by the third author at the Hamburg Uni-
versity of Technology during the last few years. The book is also accessible
to advanced undergraduate students and practitioners in computer science,
while students, researchers, and practitioners with background in life science
may feel the need to catch up on some undergraduate computer science and
mathematics. The book can be used as a text for a two-hour course on DNA
computing with emphasis on mathematical modelling.

This book is designed not as a comprehensive reference work, but rather
as a broad selective textbook. The first two chapters form a self-contained
introduction to the foundations of DNA computing: theoretical computer
science and molecular biology. Chapter 2 concisely describes the abstract,
logical, and mathematical aspects of computing. Chapter 3 briefly summa-
rizes basic terms and principles of the transfer of the genetic information
in living cells. The remaining chapters contain material that for the most
part has not previously appeared in textbook form. Chapter 4 addresses the
problem of word design for DNA computing. Proper word design is crucial in
order to successfully conduct DNA computations. Chapter 5 surveys the first
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generation of DNA computing. The DNA models are laboratory-scaled and
human-operated, and basically aim at solving complex computational prob-
lems. Chapter 6 addresses the second generation of DNA computing. The
DNA models are molecular-scaled, autonomous, and partially programmable,
and essentially target the in vitro analysis or synthesis of DNA. Chapter 7
is devoted to the newest generation of DNA computing. The DNA models
mainly aim at performing logical calculations under constraints found in liv-
ing cells.

We have not tried to trace the full history of the subjects treated – this
is beyond our scope. However, we have assigned credits to the sources that
are as readable as possible for one knowing what is written here. A good sys-
tematic reference for the material covered are the Proceedings of the Annual
International Workshop on DNA Based Computers.

First of all, we would like to thank Professor Volker Kasche and Professor
Rudi Müller for valuable support and for providing laboratory facilities for
our experimental work. We are grateful to Dr. Boris Galunsky, Stefan Goltz,
Margaret Parks, and Svetlana Torgasin for proofreading, and we express our
thanks to Wolfgang Brandt and Stefan Just for technical support. Finally,
we thank our students for their attention, their stimulating questions, and
their dedicated work, in particular, Atil Akkoyun, Gopinandan Chekrigari,
Zhang Gong, Sezin Nargül, Lena Sandmann, Oliver Scharrenberg, Tina Stehr,
Benjamin Thielmann, Ming Wei, and Michael Wild.

Hamburg, Munich Zoya Ignatova
December, 2007 Israel Mart́ınez-Pérez

Karl-Heinz Zimmermann
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Dipole moment 1 D = 3.34 · 10−30 Cm
Electron charge e = 1.602 · 10−19 C
Electron mass me = 9.109 · 10−31 kg
Gas constant R = 1.987 cal/(K mol)
Planck constant h = 6.626 · 10−34 Js
Reduced Planck constant � = h/(2π) Js
Mole 1 mol = 6.022 · 1023 molecules
Molarity 1 M = 6.022 · 1023 mol/l



Acronyms xiii

Chemical Notation

H hydrogen atom
O oxygen atom
C carbon atom
N nitrogen atom
S sulfur atom
P phosphor atom
A adenine
C cytosine
G guanine
T thymine
U uracil



Chapter 1

Introduction

Abstract This introductory chapter envisions DNA computing from the
perspective of molecular information technology, which is brought into focus
by three confluent research directions. First, the size of semiconductor devices
approaches the scale of large macromolecules. Second, the enviable compu-
tational capabilities of living organisms are increasingly traced to molecular
mechanisms. Third, techniques for engineering molecular control structures
into living cells start to emerge.

Nanotechnology

Nanotechnology focuses on the design, synthesis, characterization, and appli-
cation of materials and devices at the nanoscale. Nanotechnology comprises
near-term and molecular nanotechnology. Near-term nanotechnology aims at
developing new materials and devices taking advantage of the properties oper-
ating at the nanoscale. For instance, nanolithography is a top-down technique
aiming at fabricating nanometer-scale structures. The most common nano-
lithography technique is electron-beam-directed-write (EBDW) lithography
in which a beam of electrons is used to generate a pattern on a surface.

Molecular nanotechnology aims at building materials and devices with
atomic precision by using a molecular machine system. Nobel Prize-winner
R. Feynman in 1959 was the first who pointed towards molecular manufactur-
ing in his talk ”There’s plenty of room at the bottom,” in which he discussed
the prospect of maneuvering things around atom by atom without violat-
ing physical laws. The term nanonechnology was coined by N. Taniguchi in
1974, while in the 1980s E. Drexler popularized the modelling and design
of nanomachines, emphasizing the constraints of precision, parsimony, and
controllability, performing tasks with minimum effort. Eric Drexler’s nanoma-
chines include nano-scale manipulators to build objects atom by atom, bear-
ings and axles built of diamond-like lattices of carbon, waterwheel-like pumps

Z. Ignatova et al., DNA Computing Models, 1
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to extract and purify molecules, and tiny computers with moving parts whose
size is within atomic scale.

Nanotechnology relies on the fact that material at the nanoscale exhibits
quantum phenomena, which yield some extraordinary bonuses. This is due
to the effects of quantum confinement that take place when the material
size becomes comparable to the de Broglie wavelength of the carries (elec-
trons and holes behaving as positively charged particles), leading to dis-
crete energy levels. For instance, quantum dots are semiconductors at the
nanoscale consisting of 100 to 100,000 atoms. Quantum dots confine the
motion of (conduction band) electrons and (valency band) holes in all three
spatial directions. Quantum dots are particularly useful for optical appli-
cations due to their theoretically high quantum yield (i.e., the efficiency
with which absorbed light produces some effect). When a quantum dot
is excited, the smaller the dot, the higher the energy and intensity of its
emitted light. These optical features make quantum dots useful in biotech-
nological developments as well. Recently, D. Lidke and colleagues (2004)
successfully employed quantum dots to visualize the movement of individual
receptors on the surface of living cells with unmatched spatial and temporal
resolution.

Biotechnology

Modern biotechnology in the strong sense refers to recombinant DNA technol-
ogy, the engineering technology for bio-nanotechnology. Recombinant DNA
technology allows the manipulation of the genetic information of the genome
of a living cell. It facilitates the alteration of bio-nanomachines within the liv-
ing cells and leads to genetically modified organisms. Manipulation of DNA
mimics the horizonal gene transfer (HGT) in the test tube.

HGT played a major role in bacterial evolution. It is thought to be a sig-
nificant technique to confer drug-resistant genes. Common mechanisms for
HGT between bacterial cells are transformation, the genetic alteration of a
cell resulting from introducing foreign gene material, transduction, in which
genetic material is introduced via bacterial viruses (bacteriophages), and bac-
terial conjugation, which enables transfer of genetic material via cell-to-cell
contact. HGT appears to have some significance for unicellular eukaryotes,
especially for protists, while its prevalence and importance in the evolution
of multicellular eukaryotes remains unclear. Today, the HGT mechanisms are
used to alter the genome of an organism by exposing cells to fragments of
foreign DNA encoding desirable genes, including those from another species.
This DNA can be either transiently internalized into the cell or integrated
into the recipient’s chromosomes. Thus, it can be replicated and inherited like
any other part of the genome. HGT holds promising applications in health
care and in industrial and environmental processing.
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Bio-Nanotechnology

Nanotechnology was invented more than three billion years ago. Indeed,
nanoscale manipulators for building molecule-sized objects were required in
the earliest living cells. Today, many working examples of bio-nanomachines
exist within living cells. Cells contain molecular computers, which recognize
the concentration of surrounding molecules and compute the proper func-
tional output. Cells also host a large collection of molecule-selective pumps
that import ions, amino acids, sugars, vitamins and all of the other nutri-
ents needed for living. By evolutionary search and modification over tril-
lions of generations, living organisms have perfected a plethora of molecular
machines, structures, and processes (Fig. 1.1).

Bio-nanomachines are the same size as the nanomachines that are designed
today. But they hardly resemble the machines of our macroscopic world and
they are less familiar than E. Drexler’s manipulators built along familiar
rigid, rectilinear designs. D. Goodsell recently claimed that the organic, flex-
ible forms of bio-nanomachines can only be understood by looking at the
forces that made possible the evolution of life. The process of evolution by
natural selection places strong constraints on biological molecules, their struc-
ture and their function. As a consequence of the evolution of life, all living
organisms on earth are made of four basic molecular building blocks: pro-
teins, nucleic acids, polysaccharides, and lipids. Proteins and nucleic acids
are built in modular form by stringing subunits (monomers) together based
on genetic information. These polymers may be formed in any size and with
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monomers in any order so that they are remarkably flexible in structure and
function. On the other hand, lipids and polysaccharides are built by ded-
icated bio-machines. Each type of new lipid or polysaccharide requires an
entirely new suite of synthetic machines. Consequently, lipids and polysac-
charides are less diverse in structure and more limited in function than
proteins are.

The principles of protein structure and function may yield insight into
nanotechnological design and fabrication. Proteins are synthesized in a mod-
ular and information-driven manner by the translation machinery of the cell,
and the design of proteins is limited by a dedicated modular plan given by
the genetic code. Proteins can aggregate in larger complexes due to errors
in the protein-synthetic machinery or changes in the environmental condi-
tions, so the size of proteins that may be consistently synthesized is limited.
These aggregates can be built accurately and economically by protein-protein
interactions based on many weak interactions (hydrogen bonds) and highly
complementary shapes of interacting surfaces. Proteins are synthesized in
cells and are transported to their ultimate destinations or diffuse freely in a
crowded collection of competitors. A typical protein will come into partial
contact with many other types of proteins and must be able to discriminate
its unique target from all others. Proteins constantly flex at physiological tem-
peratures, with covalent bonds remaining connected, and reshaped hydrogen
bonds and salt bridges linking portions of the molecule or aggregate. Proteins
even breathe, switching between different conformations and allowing atoms
or small molecules to pass.

Synthetic Biology

The term synthetic biology was introduced by E. Kool and other speakers
at the annual meeting of the American Chemical Society in 2000. Synthetic
biology in broader terms aims at recreating the properties of living systems in
unnatural chemical systems. That means, assembling chemical systems from
unnatural components so that the systems support Darwinian evolution and
are thus biological. Thus, synthetic biology may provide a way to better
understand natural biology.

DNA and RNA are the molecular structures that support genetic systems
on earth. Synthetic biology partially shows that the DNA and RNA back-
bone is not a simple scaffold to hold nucleobases but has an important role in
molecular recognition, and the repeating charge provides the universal fea-
ture of genetic molecules that they work in water. Recently, S. Benner and
coworkers (2003) constituted a synthetic genetic system by eight nucleotides
that were generated from the natural nucleobases by shuffling hydrogen-bond
donating and accepting groups. This system is part of the Bayer VERSANT
branched DNA diagnostic assay which provides a reliable method to quantify
HIV-1 RNA in human plasma.
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Molecular Self-Assembly

Molecular self-assembly is an autonomous process of nanofabrication in which
molecules or aggregates are formed without the influence of an outside source.
The physicist H.R. Crane (1950) provided two basic design concepts required
for molecular self-assembly. First, the contact or combined spots on the com-
ponents must be multiple and weak. Thus, an array of many weak interactions
is considered preferable to a few very strong interactions because the latter
may lead to interactions with wrong candidates. Second, the assembled com-
ponents must be highly complementary in their geometrical arrangement so
that tightly packed aggregates can result. These two concepts can be observed
in numerous protein-protein structures, as already mentioned.

Molecular self-assembly can theoretically create a wide range of aggregates.
However, a major inherent difficulty is that the exact set of components and
interactions that will construct the aggregate is difficult to determine. Recent
advances in biotechnology and nanotechnology provided tools necessary to
consider engineering at the molecular level. DNA computation introduced by
L. Adleman in 1994 blazed a trail for the experimental study of programmable
biochemical reactions, the self-assembly of DNA structures.

DNA Nanotechnology

DNA nanotechnology was initiated by N. Seeman in the 1980s. It makes use
of the specificity of Watson-Crick base pairing and other DNA properties to
make novel structures out of DNA. The techniques used are also employed
by DNA computing and thus DNA nanotechnology overlaps with DNA com-
puting. A key goal of DNA nanotechnology is to construct periodic arrays
in two and three dimensions. For this, DNA branched junctions with spe-
cific sticky ends are designed that self-assemble to stick figures whose edges
are double-stranded DNA. Today, this technology provides cubes, truncated
octahedrons, and two-dimensional periodic arrays, while three-dimensional
periodic arrays are still lacking. One ultimate goal is the rational synthesis of
DNA cages that can host guest molecules whose structure is sought by crys-
tallography. This would overcome the weakness of the current crystallization
protocol and provide a good handle on the crystallization of all biological
molecules.

Computing

A digital computer can be viewed as a network of digital components such
as logic gates. The network consists of a finite number of components and
the components can take on a few states. Thus, the network has only a finite
number of states, and hence any realizable digital computer is a finite state
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machine, although with a vast number of states. Today, these machines are
realized by digital electronic circuits mainly relying on transistor technology.
The success of digital electronic circuits is based on low signal-to-noise ratio,
inter-connectability, low production costs, and low power dissipation. Digital
electronic circuits scaled predictably during the last 30 years, with unchanged
device structure and operability. Another decade of scaling appears to be
feasible.

Digital computers excel in many areas of applications, while other inter-
esting information processing problems are out of reach. The limitations are
of both a theoretical and physical nature. Theoretical limitions are due to
the nature of computations. The first model of effective computation was
introduced by the Turing machine, which is essentially a finite state machine
with an unlimited memory. In view of the generally accepted Church’s thesis,
the model of computation provided by the Turing machine is equivalent to
any other formulation of effective computation. A machine capable of car-
rying out any computation is called a universal machine. Universal Turing
machines exist, and every personal computer is a finite-state approximation
of a univeral machine. A general result in computability reveals the exis-
tence of problems that cannot be computed by a universal machine despite
potentially unlimited resources. Efficient computations can be carried out
on practical computers in polynomial time and space. However, there are
computational problems that can be performed in exponential time and it
is unknown whether they can be performed in polynomial time and space.
A prototype example is the travelling salesman problem that seeks to find a
route of minimal length through all cities in a road map.

Biomolecular Computing

Current attempts to implement molecular computing fall into two categories.
In the first are studies to derive molecular devices that mimic components of
conventional computing devices. Examples are transistors from carbon-based
semiconductors and molecular logic gates. The second includes investigations
to find new computing paradigms that exploit the specific characteristics of
molecules. Examples that fall into this category are computions based on
diffusion-reaction or self-assembly.

A physical computation in a digital computer evolves over time. Informa-
tion is stored in registers and other media, while information is processed
by using digital circuits. In biomolecular computing, information is stored
by biomolecules and processing of information takes place by manipulating
biomolecules. The concept of biomolecular computing was theoretically dis-
cussed by T. Head in 1987, but L. Adleman in 1994 was the first to solve
a small instance of the travelling salesman problem with DNA. Adleman’s
experiment attracted considerable interest from researchers hoping that the
massive parallelization of DNA molecules would one day be the basis to
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outperform electronic computers, when it comes to the computation of com-
plex combinatorial problems. However, soon thereafter, researchers realized
some of the drawbacks related to this incipient technology: a growing num-
ber of error-prone, time-consuming operations, and exponential growth of
DNA volume with respect to problem size. Although some new concepts like
molecular self-assembly counteracted these difficulties, no satisfactory solu-
tion to these problems has been found so far questioning the feasibility of
this technology for solving intractable problems.

Therefore, molecular computing should not be viewed as a competitor for
conventional computing, but as a platform for new applications. Progress
in molecular computing will depend on both novel computing concepts and
innovative materials. The goal of molecular information processing is to find
computing paradigms capable of exploiting the specific characteristics of
molecules rather than requiring the molecules to conform to a given specific
formal specification.
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Chapter 2

Theoretical Computer Science

Abstract This chapter provides a self-contained introduction to a collection
of topics in computer science that focusses on the abstract, logical, and math-
ematical aspects of computing. First, mathematical structures called graphs
are described that are used to model pairwise relations between objects
from a certain collection. Second, abstract machines with a finite number
of states called finite state automata are detailed. Third, mathematical mod-
els of computation are studied and their relationships to formal grammars
are explained. Fourth, combinatorial logic is introduced, which describes logic
circuits whose output is a pure function of the present input only. Finally,
the degrees of complexity to solve a problem on a computer are outlined.

2.1 Graphs

Graph theory provides important tools to tackle complex problems in differ-
ent parts of science.

2.1.1 Basic Notions

A graph is a pair G = (V, E), consisting of a non-empty set V and a set
E of two-element subsets of V . The elements of V are called vertices and
the elements of E are termed edges. An edge e = {u, v} is also written as
e = uv (or e = vu). If e = uv is an edge, then u and v are incident with e, u
and v are adjacent , and u and v form the end-vertices of e. In the following,
we consider finite graphs (i.e., graphs with finite vertex sets). The number of
vertices and edges of a graph G is called the order and size of G, respectively.

A graph is described by a diagram, in which the vertices are points in the
drawing plane and the edges are line segments.

Z. Ignatova et al., DNA Computing Models, 9
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Fig. 2.1 Diagram of the
graph in Example 2.1.
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Example 2.1. The graph G with vertex set V = {v1, . . . , v4} and edge set
E = {v1v3, v2v3, v2v4, v3v4} is given by the diagram in Figure 2.1. ♦

A graph G = (V, E) has neither loops nor multiple edges. Loops are one-
element subsets of V (i.e., edges incidenting with only one vertex). Multiple
edges are multisets over the two-element subsets of V . A multiset over a set
M is a mapping f : M → N0 assigning to each element m in M the number
of occurrences f(m) in the multiset.

Let G = (V, E) be a graph. The number of edges which are incident with
a vertex v ∈ V is called the degree of v and is denoted by d(v). A vertex v in
G is called isolated if d(v) = 0. If all vertices in G have the same degree k,
then the graph G is called k-regular .

Lemma 2.2. (Handshaking) For each graph G = (V, E),
∑

v∈V

d(v) = 2|E| . (2.1)

Proof. On the left hand side, each edge in the sum is counted twice, once for
each vertex. �
Corollary 2.3. In each graph, the number of vertices of odd degree is even.

Example 2.4. Can 333 phones be connected so that each phone is connected
with three phones? The answer is no, because the sum of degrees in this
network would be odd (333 · 3), contradicting the handshaking lemma. ♦

The degree sequence of a graph G is given by the decreasing list of degrees
of all vertices in G. For instance, the graph in Figure 2.1 has the degree
sequence (3, 2, 2, 1). On the other hand, not every decreasing sequence of
natural numbers is the degree sequence of a graph, such as (5, 3, 2, 2, 2, 1),
since the sum of degrees is odd.

Subgraphs

Let G = (V, E) be a graph. A subgraph of G is a graph G′ = (V ′, E′) with
V ′ ⊆ V and E′ ⊆ E ∩ (

V ′

2

)
, where

(
V ′

2

)
is the set of 2-element subsets of

V ′. The subgraph G′ is considered to be induced from its edge set E′. If
E′ = E ∩ (

V ′

2

)
, the subgraph G′ is induced from its vertex set V ′.
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Fig. 2.2 Two subgraphs, G1 and G2, of the graph G in Figure 2.1.

Example 2.5. In view of the graph G in Figure 2.1, two of its subgraphs G1

and G2 are illustrated in Figure 2.2. The subgraph G2 is induced from the
vertex set {v2, v3, v4}, while the subgraph G1 is not because the edge v2v3 is
missing. ♦

Isomorphisms

Let G = (V, E) and G′ = (V ′, E′) be graphs. A mapping φ : V → V ′ is called
an isomorphism from G onto G′, if φ is bijective and for all vertices u, v ∈ V ,
uv ∈ E if and only if φ(u)φ(v) ∈ E′. Two graphs G and G′ are termed
isomorphic if there is an isomorphism from G onto G′. Clearly, isomorphic
graphs have the same order, size, and degree sequence.

Example 2.6. The graphs in Figure 2.3 are isomorphic. An isomorphism is
given by φ(vi) = ui for 1 ≤ i ≤ 4. ♦

2.1.2 Paths and Cycles

Let G = (V, E) be a graph. A sequence W = (v0, . . . , vk) of vertices vi ∈ V
is called a path in G, if for each i, 1 ≤ i ≤ k, we have vi−1vi ∈ E. The vertex
v0 is the initial vertex and the vertex vk the final vertex in W . The length
of W equals n, the number of edges in W . A path W is called simple if W
contains each vertex at most once.
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Fig. 2.3 Two isomorphic graphs.
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Fig. 2.4 A Manhattan network.

Example 2.7. The graph in Figure 2.4 contains several simple paths of
length 6 such as (s, a, d, g, f, i, t) and (s, a, b, e, h, i, t). ♦

A cycle in G is a path in G, in which the initial and final vertex are
identical. A cycle is called simple if it contains each vertex at most once
(apart from the initial and final vertex). Each edge uv provides a simple
cycle (u, v, u) of length 2.

Example 2.8. The graph in Figure 2.4 contains several simple cycles of
length 6 such as (a, b, c, h, e, d, a) and (a, b, e, f, g, d, a). ♦

Connectedness

Let G = (V, E) be a graph. Two vertices u, v ∈ V are called connected in
G, briefly u ≡G v, if u = v or there is a path from u to v in G. If any two
vertices in G are connected, then G is termed connected. For each vertex v
in G, define the set of vertices connected to v as CG(v) = {u ∈ V | u ≡G v}.

Theorem 2.9. Let G = (V, E) be a graph. The set of connected sets CG(v),
v ∈ V , of G is a partition of V (i.e., the sets are non-empty and their union
provides the overall set V , and any two sets are either equal or disjoint).

A subgraph induced by a connected set of G is called a component of G. If
G is connected, then there is only one component.

Example 2.10. The graph in Figure 2.5 consists of two components: {a, b}
and {c, d, e}. ♦

Theorem 2.11. Let G = (V, E) be a connected graph and let K be a simple
cycle in G. If an edge e ∈ G on the cycle K is deleted from G, the resulting
subgraph of G is still connected.
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Fig. 2.5 A graph with
two components.
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2.1.3 Closures and Paths

A directed graph is a pair G = (V, E), consisting of a non-empty set V and
a subset E of V × V (Fig. 5.1). Each undirected graph can be assigned a
directed graph so that each edge e = uv is replaced by the edges (u, v) and
(v, u). The edge set of a directed graph forms a binary relation on V . The
indegree of a vertex v in G is the number of incoming edges (u, v), u ∈ V ,
and the outdegree of v is the number of outcoming edges (v, w), w ∈ V .

Let R be a binary relation on a set A (i.e., R ⊆ A×A). Define the powers
of R inductively as follows:

• R0 = {(a, a) | a ∈ A},
• Rn+1 = R ◦Rn = {(a, c) | (a, b) ∈ R, (b, c) ∈ Rn, b ∈ A} for all n ≥ 0.

Clearly R1 = R0 ◦R = R. The definition implies the following:

Theorem 2.12. Let G = (V, E) be a directed graph and let n ≥ 0 be an
integer. The nth power En provides all paths of length n between any two
vertices in G.

Define R+ =
⋃

n≥1 Rn and R∗ =
⋃

n≥0 Rn = R+ ∪R0.

Theorem 2.13. Let R be a binary relation on a set A. The relation R+ is
the smallest transitive relation containing R. The relation R∗ is the smallest
reflexive, transitive relation that contains R.

Proof. Let R′ =
⋃

n≥1 Rn. Claim that R′ is transitive. Indeed, let a, b, c ∈ A
with (a, b) ∈ R′ and (b, c) ∈ R′. Then there are non-negative integers m
and n so that (a, b) ∈ Rm and (b, c) ∈ Rn. Thus, (a, c) ∈ Rm+n and hence
(a, c) ∈ R′. Moreover, R = R1 and so R ⊆ R′.

Finally, let R′′ be a transitive relation on A, which contains R. Claim
that R′ ⊆ R′′. Indeed, let a, b ∈ A with (a, b) ∈ R′. Then there is a non-
negative integer n so that (a, b) ∈ Rn. Consequently, there are elements
a1, . . . , an−1 in A so that (a, a1) ∈ R, (ai, ai+1) ∈ R for all 1 ≤ i ≤ n−2, and
(an−1, b) ∈ R. But R is a subset of R′′ and so (a, a1) ∈ R′′, (ai, ai+1) ∈ R′′

for all 1 ≤ i ≤ n− 2, and (an−1, b) ∈ R′′. As R′′ is transitive, it follows that
(a, b) ∈ R′′ and so the claim is established.

The second assertion is similarly proved. �
The relation R+ is called the transitive closure of R, while the relation R∗ is
termed the reflexive, transitive closure of R.
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Distances

Let G = (V, E) be a graph and let u, v ∈ V . Define the distance between u
and v in G as follows:

dG(u, v) =

⎧
⎨

⎩

0 if u = v,
∞ if u and v are not connected,
l if l is the length of a shortest path in G from u to v.

(2.2)

Theorem 2.14. Let G = (V, E) be a graph. The distance dG defines a metric
on G. That is, for all u, v, w ∈ V , dG(u, v) = 0 if and only if u = v, dG(u, v) =
dG(v, u), and dG(u, w) ≤ dG(u, v) + dG(v, w).

Notice that each metric dG satisfies dG(u, v) ≥ 0 for all u, v ∈ V , because
0 = dG(u, u) ≤ dG(u, v) + dG(v, u) = 2dG(u, v).

2.1.4 Trees

A graph is called cycle-free or a forest if it contains no simple cycles of length
at least 3. A connected forest is called a tree (Fig. 2.6).

Theorem 2.15. Each tree contains at least two vertices of degree 1.

Proof. Let G be a tree. Let u und v be vertices in G so that their distance
dG(u, v) is maximal. Let W = (u, v1, . . . , vk−1, v) be a shortest path in G
from u to v. Suppose that u has two adjacent vertices, v1 and w. Then by
hypothesis, dG(w, v) ≤ dG(u, v). Thus there is a shortest path from w to v
not using u. So G contains a simple cycle of length at least 3. A contradiction.
Consequently, u has degree 1 and, by symmetry, also v. �
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Fig. 2.6 A tree.
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Theorem 2.16. For each tree G = (V, E), we have |E| = |V | − 1.

Proof. The case |V | = 1 is clear. Let G be a tree with |V | > 1 vertices.
In view of Theorem 2.15, the graph G contains a vertex of degree 1. If this
vertex is deleted, the resulting subgraph G′ = (V ′, E′) of G is a tree, too. By
induction hypothesis, 1 = |V ′| − |E′| = (|V | − 1)− (|E| − 1) = |V | − |E|. �

Let G = (V, E) be a graph. A spanning tree of G is a subgraph of G, which
forms a tree and contains each vertex of G (Fig. 2.7).

Theorem 2.17. Each connected graph contains a spanning tree.

Proof. Let G = (V, E) be a connected graph. If |E| = 1, then the assertion is
clear. Let |E| > 1. If G is a tree, then G is its own spanning tree. Otherwise,
there is a simple cycle of length at least 3 in G. Delete one edge from this
cycle. The resulting subgraph G′ of G has |E| − 1 edges and is connected by
Theorem 2.11. Thus by induction hypothesis, G′ has a spanning tree, and
this spanning tree is also a spanning tree of G. �

Theorem 2.18. A connected graph G = (V, E) is a tree if and only if |E| =
|V | − 1.

Proof. Let |E| = |V | − 1. Suppose G is not a tree. Then G contains a simple
cycle of length at least 3. Delete one edge from this cycle. The resulting
subgraph G′ = (V, E′) of G is connected by Theorem 2.11. The edge set
in G′ fulfills |E′| < |V | − 1. On the other hand, Theorems 2.16 and 2.17
imply that G contains a spanning tree with |V | − 1 edges, which lies in E′.
A contradiction. The reverse assertion was proved in Theorem 2.16. �
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Fig. 2.7 A spanning tree of the graph in Figure 2.4.
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Fig. 2.8 A bipartite
graph with partition
{{a, b, c}, {d, e, f}}. 
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2.1.5 Bipartite Graphs

A graph G = (V, E) is called bipartite if there is a partition of V into subsets
V1 und V2 so that every edge in G has one end-vertex in V1 and one end-vertex
in V2 (Fig. 2.8).

Theorem 2.19. A connected graph G is bipartite if and only if G contains
no cycles of odd length.

Proof. Let G = (V, E) be a bipartite graph with partition {V1, V2}. Let K =
(v0, v1, . . . , vk) be a cycle in G. If v0 ∈ V1, then v1 ∈ V2, v2 ∈ V1, and so on.
Thus, vk = v0 ∈ V1 and hence the cycle K has even length. If v0 ∈ V2, then
the result is the same.

Conversely, assume that G contains no cycles of odd length. Let v ∈ V
and define

V1 = {u ∈ V | dG(v, u) ≡ 1 mod 2}
and

V2 = {u ∈ V | dG(v, u) ≡ 0 mod 2} .

Clearly, {V1, V2} is a partition of V . Suppose that there is an edge uw in
G with u, w ∈ V1. Then there is a cycle, consisting of the edge uw, a path
of length dG(w, v) from w to v, and a path of length dG(v, u) from v to u.
This cycle has total length 1+dG(w, v)+dG(v, u), which is odd by definition
of V1 and V2. A contradiction. Similarly, there exists no edge uw in G with
u, w ∈ V2. �

2.2 Finite State Automata

Finite state automata are a simple type of machine studied first in the 1940s
and 1950s. These automata were originally proposed to model brain func-
tions. Today, finite state automata are mainly used to specify various kinds
of hardware and software components.
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2.2.1 Strings and Languages

Let Σ be a finite set and let n be a non-negative integer. A word or string
of length n over Σ is a sequence x = a1 . . . an so that ai ∈ Σ for each
1 ≤ i ≤ n. The length of a string x is denoted by |x|. The set Σ is termed
alphabet and the elements of Σ are called characters or symbols. The empty
string corresponds to the empty sequence and is denoted by ε. For instance,
the strings of length at most 2 over Σ = {a, b} are ε, a, b, aa, ab, ba,
and bb.

Define Σn as the set of all strings of length n over Σ. In particular, Σ0 =
{ε} and Σ1 = Σ. Moreover, let Σ∗ be the set of all strings over Σ (i.e., Σ∗

is the disjoint union of all sets Σn, n ≥ 0). Write Σ+ for the set of all non-
empty strings over Σ (i.e., Σ+ is the disjoint union of all sets Σn, n ≥ 1).
Any subset of Σ∗ is called a (formal) language over Σ.

The concatenation of two strings x and y is the string xy formed by joining
x and y. Thus, the concatenation of the strings “home” and “work” is the
string “homework”. Let x be a string over Σ. A prefix of x is a string u over
Σ so that x = uv for some string v over Σ. Similarly, a postfix of x is a string
v over Σ so that x = uv for some string u over Σ.

A monoid is a set M which is closed under an associative binary operation,
denoted by ‘·’, and has an identity element ε ∈M . That is, for all x, y, and
z in M , (x ·y) · z = x · (y · z), and x · ε = x = ε ·x. This monoid is written as a
triple (M, ·, ε). In particular, the set Σ∗ forms a monoid with the operation
of concatenation of strings and with the empty string as the identity element.
For any two languages L1 and L2 over Σ, write L1L2 = {xy | x ∈ L1, y ∈ L2}
to denote their concatenation.

Let (M, ·, ε) and (M ′, ◦, ε′) be monoids. A homomorphism from M to M ′

is a mapping φ : M →M ′ so that for all x, y ∈M , φ(x · y) = φ(x) ◦φ(y) and
φ(ε) = ε′. An anti-homomorphism from M to M ′ is a mapping φ : M →M ′

so that for all x, y ∈M , φ(x·y) = φ(y)◦φ(x) and φ(ε) = ε′. A homomorphism
φ : M →M is called a morphic involution if φ2 is the identity mapping. The
simplest morphic involution is the identity mapping. An anti-homomorphism
φ : M → M so that φ2 is the identity mapping is termed an anti-morphic
involution.

Let Σ be an alphabet. Each mapping f : Σ → Σ can be extended to a
homomorphism φ : Σ∗ → Σ∗ so that φ(a) = f(a) for each a ∈ Σ. To see
this, put φ(a1 . . . an) = f(a1) . . . f(an) for each string a1 . . . an ∈ Σ∗. Simi-
larly, each mapping f : Σ → Σ can be extended to an anti-homomorphism
φ : Σ∗ → Σ∗. For this, define φ(a1 . . . an) = f(an) . . . f(a1) for each string
a1 . . . an ∈ Σ∗.

Single strands of DNA are quaternary strings over the DNA alphabet
Δ = {A, C, G, T}. Strands of DNA are oriented (e.g., AACG is distinct from
GCAA). An orientation is introduced by declaring that a DNA string begins
with the 5’-end and ends with the 3’-end. For example, the strands AACG and
GCAA are denoted by 5’-AACG-3’ and 5’-GCAA-3’, respectively. Furthermore,
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in nature DNA is predominantly double-stranded. Each natural strand occurs
with its reverse complement, with reversal denoting that the sequences of the
two strands are oppositely oriented, relative to one other, and with comple-
mentarity denoting that the allowed pairings of letters, opposing one another
on the two strands, are the Watson-Crick pairs {A, T} and {G, C}. A dou-
ble strand results from joining reverse complementary strands in opposite
orientations:

5’-AACGTC-3’
3’-TTGCAG-5’ .

DNA strands that differ by orientation are mapped onto each other by the
mirror involution μ : Δ∗ → Δ∗, which is the anti-homomorphism extending
the identity mapping. For example, μ(AACG) = GCAA. The mirror image of
a DNA string x is denoted by xR = μ(x). Moreover, the complementarity
involution is the morphic involution φ : Δ∗ → Δ∗ that extends the com-
plementarity mapping f : Δ → Δ given by f(A) = T, f(C) = G, f(G) = C,
and f(T) = A. For example, φ(AACG) = TTGC. The complementary image of
a DNA string x is denoted by xC = φ(x). Finally, reverse complementary
strands are obtained by the reverse complementarity involution or Watson-
Crick involution τ = μφ (= φμ), which is composed of the mirror involu-
tion μ and the complementarity involution φ (in any order). For example,
τ(AACG) = CGTT. The reverse complementary image of a DNA string x is
denoted by xRC = τ(x).

2.2.2 Deterministic Finite State Automata

A finite state automaton can be thought of as a processing unit reading
an input string and accepting or rejecting it. A (deterministic) finite state
automaton is a quintuple M = (Σ, S, δ, s0, F ) so that Σ is an alphabet, S is
a finite set of states with S ∩ Σ = ∅, s0 ∈ S is the initial state, F ⊆ S is
the set of final states, and δ : S × Σ → S is the transition function, where
the transition δ(s, a) = s′ is also graphically written as s

a→ s′. The size of a
finite state automaton M , denoted by |M |, is the number |S|+ |δ|.
Example 2.20. Consider the finite automaton M with state set S = {s0, s1},
input alphabet Σ = {a, b}, initial state s0, final state set F = {s0}, and
transition function δ given by the transition graph in Figure 2.9. ♦

A finite state automaton M computes a string x = a1 . . . an as follows:
M starts in the initial state s0, reads the first symbol a1 and enters the
state s1 = δ(s0, a1). Then it reads the next symbol a2 and enters the state
s2 = δ(s1, a2) and so on. After reading the last symbol an, the automaton
enters the state sn = δ(sn−1, an). Therefore, the processing of an input string
x can be traced by the associated path (s0, . . . , sn) in the transition graph.
If the last state sn is a final state, then M accepts the string x; otherwise,
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Fig. 2.9 Transition
graph of finite state
automaton.
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M rejects the string x. The language of M is the set of all strings accepted
by M ,

L(M) = {x ∈ Σ∗ |M accepts x} . (2.3)

The multi-step behavior of a finite state automaton M can be formally
described by the extended transition function δ∗ : S × Σ∗ → S, which is
inductively defined as follows:

• δ∗(s, ε) = s,
• δ∗(s, ax) = δ∗(δ(s, a), x) for all s ∈ S, a ∈ Σ, and x ∈ Σ∗.

In particular, δ∗(s, a) = δ(s, a) for all s ∈ S and a ∈ Σ. The language of M
is thus given by

L(M) = {x ∈ Σ∗ | δ∗(s0, x) ∈ F} . (2.4)

If L = L(M) is a finite language, the size of the accepting automaton M is
in the worst case proportional to the total length of all strings in L.

Example 2.21. Consider the finite state automaton M in Example 2.20. The
language of M consists of all strings over Σ which contain an even number
of a’s. For instance, δ∗(s0, abab) = s0 and δ∗(s0, bbab) = s1. ♦

2.2.3 Non-Deterministic Finite State Automata

Non-deterministic machines may provide several next states for each pair
of state and input symbol. A non-deterministic finite state automaton is a
quintuple M = (Σ, S, δ, S0, F ) so that Σ is an alphabet, S is a finite set of
states with S ∩Σ = ∅, S0 ⊆ S is the set of initial states, F ⊆ S is the set of
final states, and δ : S ×Σ → P (S) is the transition function.

A non-deterministic finite state automaton M computes a string x =
a1 . . . an similar to its deterministic counterpart. However, M can start in
any initial state, and if it happens to enter the state s and reading symbol
a, then it can enter any state in δ(s, a). Therefore, the processing of the
input string x can be traced by all paths (s0, . . . , sn) in the corresponding
transition graph so that s0 ∈ S0 and si ∈ δ(si−1, ai) for all 1 ≤ i ≤ n.
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The multi-step behavior of a non-deterministic finite state automaton M
can be formally described by the extended transition function δ∗ : P (S) ×
Σ∗ → P (S) which is inductively defined as follows:

• δ∗(S′, ε) = S′ for each S′ ⊆ S,
• δ∗(S′, ax) =

⋃
s∈S′ δ∗(δ(s, a), x) for each S′ ⊆ S, a ∈ Σ, x ∈ Σ∗.

In particular, δ∗({s}, a) = δ(s, a) for each s ∈ S and a ∈ Σ.
The language of M is the set of all strings accepted by M ,

L(M) = {x ∈ Σ∗ | δ∗(S0, x) ∩ F �= ∅} . (2.5)

Example 2.22. Let M = (Σ, S, δ, S0, F ) be the non-deterministic finite state
automaton so that S = {s0, s1, s2}, Σ = {a, b}, S0 = {s0, s1}, F = {s2},
and transition function δ given by the transition graph in Figure 2.10. The
language of M consists of all strings of the form bmaw and bmabnaw, where
m, n ≥ 0 and w ∈ Σ∗. ♦

The computing models of deterministic and non-deterministic finite state
automata are equivalent, as shown by the following

Theorem 2.23. Each language accepted by a non-deterministic finite state
automaton can also be accepted by a deterministic finite state automaton.

Proof. Let M = (Σ, S, δ, S0, F ) be a non-deterministic finite state automa-
ton. Define a deterministic finite state automaton M ′ = (Σ, S, δ′, s′0, F ′),
where

S = P (S) , (2.6)

δ′(S′, a) =
⋃

s∈S′
δ(s, a) = δ∗(S′, a), S′ ∈ S , (2.7)

s′0 = S0 , (2.8)
F ′ = {S′ ⊆ S | S′ ∩ F �= ∅} . (2.9)

Fig. 2.10 Non-
deterministic finite state
automaton. 
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For each x = a1 . . . an ∈ Σ∗, we have x ∈ L(M) if and only if there is a
sequence of subsets S1, . . . , Sn of S so that δ∗(Si−1, ai) = Si for all 1 ≤ i ≤ n
and Sn ∩F �= ∅. The latter is equivalent to δ′(Si−1, ai) = Si for all 1 ≤ i ≤ n
and Sn ∈ F ′, which in turn is equivalent to x ∈ L(M ′). �

2.2.4 Regular Expressions

Regular expressions are formulas which represent regular languages. Let Σ
be an alphabet. The set of regular expressions over Σ is inductively defined
as follows:

• ∅ is a regular expression
• ε is a regular expression
• For each symbol a ∈ Σ, a is a regular expression
• If α and β are regular expressions, then αβ, α ∪ β, and α∗ are regular

expressions

The language of a regular expression γ over Σ is inductively defined as follows:

• If γ = ∅, then L(γ) = ∅
• If γ = ε, then L(γ) = {ε}
• If γ = a, then L(γ) = {a}
• If γ = αβ, then L(γ) = L(α)L(β)
• If γ = α ∪ β, then L(γ) = L(α) ∪ L(β)
• If γ = α∗, then L(γ) = L(α)∗

For each regular expression α, define α+ = αα∗.

Example 2.24. Each finite language can be described by a regular expression.
Indeed, if L = {x1, . . . , xn} then α = x1 ∪ . . . ∪ xn is a regular expression so
that L(α) = L.

The language of the automaton in Example 2.20 is given by the reg-
ular expression α = b∗(ab∗a)∗b∗, while the language of the machine in
Example 2.22 is described by the regular expression α = b∗a(a ∪ b)∗

∪ b∗ab∗a(a ∪ b)∗. ♦
Theorem 2.25. The set of all languages described by regular expressions
equals the set of all languages accepted by finite state automata.

Proof. Let γ be a regular expression over Σ. Claim that there is a non-
deterministic finite state automaton M so that L(M) = L(γ). Indeed, this
can be proved by induction over the definition of regular expressions. If γ = ∅,
γ = ε, or γ = a, a ∈ Σ, then L(γ) can be described by a finite state automaton
with the required property.

Let γ = αβ. By induction, there are finite state automata M1 and M2 so
that L(M1) = L(α) and L(M2) = L(β). By serializing these automata we
obtain a finite state automaton M so that the initial states of M are the
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initial states of M1 and the final states of M are the final states of M2. If
ε ∈ L(α), then also the initial states of M2 are initial states of M . Moreover,
all states in M1, which are linked with a final state in M1, are also connected
to the initial states of M2. Then L(M) = L(M1)L(M2) = L(α)L(β) = L(αβ)
as required.

Let γ = α ∪ β. By induction, there are automata M1 = (Σ, S1, δ1, s01, F1)
and M2 = (Σ, S2, δ2, s02, F2) with S1 ∩ S2 = ∅ so that L(M1) = L(α) and
L(M2) = L(β). Then the automaton M = (Σ, S1∪S2, δ1∪δ2, {s01, s02}, F1∪
F2) fulfills L(M) = L(α ∪ β).

Let γ = α∗. By induction, there is a finite state automaton M1 so that
L(M1) = L(α). Define a finite state automaton M so that M has the same
initial and final states as M1. Moreover, each state connected with a final
state in M1 is also linked to the initial states of M1. If ε �∈ L(α), then add a
state which is both initial and final state but not linked with the other states.
Then L(M) = L(M1)∗ = L(α)∗ = L(α∗).

Conversely, let M be a deterministic finite state automaton over Σ with
state set S = {s1, . . . , sn} and initial state s1. Let 1 ≤ i, j ≤ n and 0 ≤
k ≤ n. Define Lk

ij as the set of all strings x ∈ Σ∗ so that δ∗(si, x) = sj and
no intermediate state has an index larger than k (up to si and sj). Claim
that each language Lk

ij can be described by a regular expression over Σ.
Indeed, if i = j, then L0

ii = {ε} ∪ {a ∈ Σ | δ(si, a) = si}, and if i �= j,
L0

ij = {a ∈ Σ | δ(si, a) = sj}. Both languages are finite and so can be
described by regular expressions. Moreover, we have

Lk+1
ij = Lk

ij ∪ Lk
i,k+1(L

k
k+1,k+1)

∗Lk
k+1,j .

Indeed, in order to pass from state si to state sj , the state sk+1 is either
not used or will be traversed at least once. The latter is described by the
language Lk

i,k+1(L
k
k+1,k+1)

∗Lk
k+1,j .

By induction over k, let αk
ij be a regular expression so that L(αk

ij) = Lk
ij .

Hence, the language Lk+1
ij can be described by the regular expression

αk+1
ij = αk

ij ∪ αk
i,k+1(α

k
k+1,k+1)

∗αk
k+1,j .

This proves the claim. But the language of M is given by

L(M) =
⋃

si∈F

Ln
1,i .

Hence, we have

L(M) =
⋃

si∈F

L(αn
1,i) = L

(
⋃

si∈F

αn
1,i

)
.

�
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2.2.5 Stochastic Finite State Automata

Stochastic machines provide a generalization of deterministic machines. Tran-
sitions in stochastic machines are based on probability distributions. A prob-
ability distribution p on a finite set S is a mapping p : S → R

+
0 so that∑

s∈S p(s) = 1.
A stochastic finite state automaton is a quintuple M = (Σ, S, P, q0, qf ) so

that Σ is an alphabet, S is a finite set of states with Σ ∩S = ∅, q0 is a initial
probability distribution on state set S, qf is a final probability distribution on
state set S, and P is a conditional probability distribution so that P (· | a, s)
is a probability distribution on the state set S for each pair (a, s) ∈ Σ × S.

Example 2.26. Consider the stochastic finite state automaton M with alpha-
bet Σ = {a, b}, state set S = {s0, s1}, initial and final probability distri-
butions q0(s0) = qf (s0) = 1 and q0(s1) = qf (s1) = 0, and the transition
probabilities given in Figure 2.11. ♦

A stochastic finite state automaton M computes a string x = a1 . . . an

similar to its deterministic counterpart. For this, M reads the first symbol
starting in the initial state s with probability q0(s). The computation consists
of a series of iterations. In each iteration, if M is in state s with probability
q and reads the next input symbol a, then M enters state s′ with probability
P (s′ | a, s) · q. The computation terminates when the string is exhausted.

The multi-step behavior of a stochastic automaton M can be described by
extending the transition probabilities so that for the empty string ε,

P (s′ | ε, s) =
{

1 if s = s′,
0 if s �= s′, (2.10)

and for each non-empty string x = a1 . . . an+1 over Σ and states s, s′ ∈ S,

P (s′ | a1 . . . anan+1, s) =
∑

s′′∈S

P (s′ | an+1, s
′′)P (s′′ | a1 . . . an, s) . (2.11)

That is, in order to reach state s′ from state s by reading the string x, all
intermediate states s′′ need to be considered that can be reached from s

start

1.0

���
�

�
�

�


������s0

a:0.8
��

b:0.6

��

a:0.2,b:0.4
��

1.0
���

�
�

�
�


������s1

b:0.7

��

a:0.9
��

a:0.1,b:0.3

��

end

Fig. 2.11 Stochastic finite state automaton.
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when the substring a1 . . . an is read. It follows that qf (s′)P (s′ | x, s)q0(s)
is the probability that M reaches the final state s′ when it reads the input
string x starting in the initial state s.

Example 2.27. In view of the stochastic automaton in Example 2.26, the prob-
ability of the string ab starting and ending in state s0 is given by

qf (s0)P (s0 | ab, s0)q0(s0) =
= qf (s0) [P (s0 | b, s0)P (s0 | a, s0) + P (s0 | b, s1)P (s1 | a, s0)] q0(s0)
= 1.0 · [0.6 · 0.8 + 0.3 · 0.2] · 1.0 = 0.54 .

♦
A stochastic finite state machine M accepts an input string x with the prob-
ability

P (x) =
∑

s,s′∈S

qf (s′)P (s′ | x, s)q0(s) . (2.12)

This is the probability that M enters a final state when it reads the string x
starting from an initial state.

A stochastic finite state automaton M becomes a stochastic finite parser
by taking into account a threshold value λ ≥ 0. A stochastic finite parser
M accepts a string x if the probability P (x) of the string being accepted
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Fig. 2.12 Computation of the string abab in the stochastic finite automaton M
(Fig. 2.11). This string is accepted with probability 0.44.
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exceeds the threshold value. The language of M with given threshold value
λ is defined by all accepted strings,

Lλ(M) = {x ∈ Σ∗ | P (x) > λ} .

Example 2.28. Let λ ≥ 0. The language of the parser in Example 2.26 with
threshold value λ consists of all strings x over Σ so that P (x) = P (s0 |
x, s0) > λ, as s0 is with certainty the initial and final state. The probability
of the string abab is calculated in Figure 2.12. ♦

2.3 Computability

This section introduces some venerable formalisms for computing that reflect
what any physical computing device is capable of doing. This includes the
construction of a universal machine that provides a programmable computer.

2.3.1 Turing Machines

Turing machines were invented by A. Turing (1936) as a thought experi-
ment about the limits of mechanical computation. Studying their abstract
properties yields many insights into computational theory. A Turing machine
consists of a tape which is divided into cells. Each cell contains a symbol from
a common alphabet. The alphabet contains a special blank symbol written
as “�”. The tape is arbitrarily long so that the machine always has as much
tape as possible. A head can read and write symbols on the tape and move
the tape to the left or to the right one cell at a time. A state register contains
the machine’s transition function (Fig. 2.13).

A Turing machine is a 7-tuple M = (Σ, S, Γ, δ, s0,�, F ) so that Σ is an
alphabet, S is a finite set of states, Γ ⊇ Σ is the tape alphabet, s0 ∈ S is
the initial state, � ∈ Γ \Σ is the blank, F ⊆ S is the set of final states, and

state register

head

�

�� �� a b a �� ��

Fig. 2.13 A Turing machine.
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δ : S × Γ → S × Γ × {L, R, N} is the transition function. This function may
be partially defined, but this does not alter what a Turing machine can do.

The equation δ(s, a) = (s′, b, r) is referred to as a transition rule and can
be interpreted as follows: If M is in state s and reads the symbol a from
the band tape, then M enters the state s′, writes the symbol b on the band
tape, and moves the head according to the value of r: left (L), right (R), or
non-moving (N).

The overall state of a Turing machine at any stage in a computation is
described by a configuration, which is given as a string in Γ ∗SΓ ∗. The con-
figuration αsβ means that αβ is the contents of the band tape, s is the state
of M , and the head is located on the first symbol of β. Each computation
of a Turing machine is started in an initial configuration s0x, where x is an
input string over Σ.

The one-step behavior of a Turing machine M is formally described by a
binary relation on the set of configurations of M as follows:

a1 . . . amsb1 . . . bn �M

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1 . . . ams′cb2 . . . bn if δ(s, b1) = (s′, c, N),
m ≥ 0, n ≥ 1,

a1 . . . amcs′b2 . . . bn if δ(s, b1) = (s′, c, R),
m ≥ 0, n ≥ 2,

a1 . . . am−1s
′amcb2 . . . bn if δ(s, b1) = (s′, c, L),

m ≥ 1, n ≥ 1 .

Moreover, if n = 1 and M moves to the right, then M meets a blank,

a1 . . . amsb1 �M a1 . . . amcs′�, if δ(s, b1) = (s′, c, R) . (2.13)

If m = 0 and M moves to the left, then M also meets a blank,

sb1 . . . bn �M s′�cb2 . . . bn, if δ(s, b1) = (s′, c, L) . (2.14)

Furthermore, if M enters a configuration in which no transition rule is appli-
cable, then M halts. The multi-step behavior of M is given by the reflexive,
transitive closure �∗M of �M . A computation of M is a finite sequence of con-
figurations (γ0, . . . , γn) so that γ0 is an initial configuration and γi �M γi+1

for each 0 ≤ i ≤ n− 1.

Example 2.29. Consider the Turing machine M with input alphabet Σ =
{0, 1}, state set S = {s1, s2, s3}, tape alphabet Γ = {0, 1,�}, initial state s1,
final state set F = {s2}, and partially defined transition function δ given as
follows:

δ(s1, 0) = (s1, 0, R), δ(s3, 0) = (s3, 1, L),
δ(s1, 1) = (s1, 1, R), δ(s3, 1) = (s3, 0, L),
δ(s1,�) = (s3,�, L), δ(s3,�), = (s2,�, R) .

The machine M reverses each input string x ∈ {0, 1}∗. For instance, given
the input x = 101, the machine produces the string 110 by the following
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computation: s1101 �M 1s101 �M 10s11 �M 101s1� �M 10s31 �M 1s300 �M

s3110 �M s3�010 �M s2010. ♦
The language of a Turing machine M is defined by all input strings whose

computation ends in a final state,

L(M) = {x ∈ Σ∗ | s0x �∗M αsβ, α, β ∈ Γ ∗, s ∈ F} . (2.15)

Example 2.30. In view of the previous example, the language of the Turing
machine M equals {0, 1}∗. ♦

2.3.2 Universal Turing Machines

Alan Turing was the first to show that universal Turing machines exist. A Tur-
ing machine is termed universal if it is able to simulate any Turing machine.
This was a remarkable finding at that time (1936) and led to the notion of
programmable computer.

First, notice that each Turing machine can be thought of as having a finite
number of tapes (Fig. 2.14). Using multiple tapes does not extend what a
Turing machine can do.

Second, notice that each Turing machine can be encoded by a binary string.
For this, let M be a Turing machine with binary input alphabet Σ = {0, 1}.
Assume that the states are s1, . . . , sr for some r, where s1 is the initial state
and s2 is the unique final state, as we assume that the machine halts if it
enters an accepting state. Moreover, let the tape symbols be z1, . . . , zs for
some s, with z1 = 0, z2 = 1, and z3 = �, and refer to the direction L as
D1, R as D2, and N as D3. Therefore, each transition rule has the form

state register

head

�

�� �� a b a �� ��

�� �� �� a a �� ��

�� �� b a �� �� ��

Fig. 2.14 A Turing machine with three tapes.
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δ(si, zj) = (sk, zl, Dm) for some integers i, j, k, l, and m. This rule can be
encoded by the string 0i10j10k10l10m. Since all integers i, j, k, l, and m
are positive, the encoded string never contains two or more consecutive 1’s.
Finally, the entire Turing machine M can be encoded by concatenating the
transition rules and separating them by pairs of 1’s:

t111t211 . . .11tn−111tn , (2.16)

where each t1, . . . , tn are the encodings of the transitions in M .

Example 2.31. The rules of the Turing machine M in Example 2.29 are
encoded as follows:

0101010100, 00010100010010,
010010100100, 00010010001010,
010001000100010, 00010001001000100 .

♦
Theorem 2.32. Universal Turing machines exist.

Proof. Define the universal language Lu as the set of all binary strings that
encode pairs (M, x), where M is a Turing machine with binary input alphabet
and x is a binary input string so that x lies in L(M). Claim that there is a
Turing machine U so that L(U) = Lu. Indeed, assume that U has multiple
tapes. More precisely, the first tape initially holds the transitions of M , along
with the string x. The second tape stores the simulated tape of M , and the
third tape holds the state of M . The operations of U can be summarized as
follows:

1. Examine the input to check whether the encoding of M is legitimate. If
not, U halts without acceptance.

2. Initialize the second tape to contain the input string x in its encoded form
(i.e., for each 0 in x place 10 on the tape and for each 1 in x place 100
there).

3. Place 0, the start state of M , on the third tape, and move the head of U ’s
second tape to the first simulated cell.

4. To simulate a transition of M , U searches on its first tape for a string
0i10j10k10l10m so that 0i is the state of the third tape, and 0j is the
tape symbol of M that begins at the position of the second tape. If so,
U changes the contents of the third tape to 0k, replaces 0j on the second
tape by 0l, and keeps the head (N) on the second tape or moves the head
on the second tape to the position of the next 1 to the left (L) or to the
right (R).

5. If M has no transition that matches the simulated state and tape symbol,
then in step 4, no transition will be found. Thus, M halts and U does
likewise.

6. If M enters its accepting state, then U accepts (M, x).
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In this way, U simulates M on x so that U accepts the encoded pair (M, x)
if and only if M accepts x. This proves the claim. �
Example 2.33. A Turing machine with a proven universal computation and
the smallest number of states times number of symbols is a 2-state, 5-symbol
Turing machine discovered by S. Wolfram (Fig. 2.15). ♦

2.3.3 Church’s Thesis

Computability theory mainly addresses the computation of (arithmetic) func-
tions. A function f : N

k
0 → N0 is called computable if there is an algorithm,

say in the form of a C program, which computes the function f (i.e., the
algorithm starts with a k-tuple (n1, . . . , nk) ∈ N

k
0 as input and terminates

after a finite number of steps providing the output f(n1, . . . , nk)). Such a
function can be partially defined, that is, provide no value for some input.
If the corresponding algorithm starts with a k-tuple that does not belong to
the domain of the function, then the algorithm is assumed to enter an infinite
loop.

Example 2.34. The following function corresponding to the Archimedes con-
stant π is computable,

fπ(m) =
{

1 if m is a prefix of the decimal evaluation of π,
0 otherwise. (2.17)

For instance, fπ(314) = 1 and fπ(2) = 0. Indeed, there are approximation
methods for computing the first m positions of the constant π. ♦

A function f : N
k
0 → N0 is called Turing computable if there is a Turing

machine M so that for all n1, . . . , nk ∈ N0, we have f(n1, . . . , nk) = m if and
only if

s0bin(n1)# . . . #bin(nk) �∗M sbin(m), s ∈ F, (2.18)

where bin(n) denotes the binary representation of n ∈ N0 and # is an auxil-
iary symbol. Notice that if the function f is partially defined, then for each


������s02/4,R;3/4,R;4/3,L




0/1,L;1/0,R

��

������s1 2/0,R;3/4,R;4/1,L

��
0/2,L;1/0,R

��

Fig. 2.15 Universal Turing machine.
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k-tuple (n1, . . . , nk) not lying in the domain of f , the Turing machine runs
into an infinite loop.

Example 2.35. The complement function n �→ n complementing each bit in
the binary representation of a non-negative integer n is Turing computable
as demonstrated by the Turing machine in Example 2.29.

The nowhere defined function is Turing computable by taking the Turing
machine M whose transitions are of the form δ(s0, a) = (s0, a, R), a ∈ Γ .
The machine M moves to the right without stopping. ♦
The thesis stated by A. Church in the 1940s hypothesizes that any (intu-
itively) computable function is Turing computable, and vice versa.

However, not every function is computable per se. To see this, consider a
real number r, 0 ≤ r ≤ 1, and define the function

fr(m) =
{

1 if m is a prefix of the decimal evaluation of r,
0 otherwise. (2.19)

On the one hand, the set of Turing programs is denumerable. A set A is called
denumerable if there is a bijective mapping g : N→ A.

Theorem 2.36. The set of all strings over a finite alphabet is denumerable.

Proof. Let Σ be a finite set. The sets Σn, n ≥ 0, are finite and form a
partition of Σ∗. Let an1, an2 . . . , anmn be the elements of Σn. The mapping
g : Σ∗ → N0, defined as anj �→ m0 + . . . + mn−1 + j, is bijective. �

On the other hand, the real-valued interval [0, 1] is non-denumerable. To
see this, we use a diagonalization argument first proposed by G. Cantor, the
founder of modern set theory, in the 19th century.

Theorem 2.37. The closed interval [0, 1] is non-denumerable.

Proof. Suppose there is a bijection g : N → [0, 1], which assigns to each
positive integer n a real number g(n) = r(n) ∈ [0, 1]. Each number r(n) can
be represented as

r(n) = 0.r
(n)
1 r

(n)
2 r

(n)
3 . . . , 0 ≤ r

(n)
i ≤ 9 .

Define the real number x = 0.x1x2x3 . . . as follows:

xn =
{

1 if r
(n)
n is even,

0 otherwise.

The number x lies in [0, 1] but does not appear in the list r(0), r(1), r(2), . . .,
because by definition, x differs from r(n) in the nth position r

(n)
n . Therefore,

g is not bijective, a contradiction. �
It follows that there exist real numbers r so that fr is not Turing computable.
By Church’s thesis, there exist real numbers r so that fr is not computable
per se.
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2.3.4 Register Machines

Register machines provide an abstract machine model whose computational
power is equivalent to that of Turing machines. A register machine consists
of an infinite number of registers r0, r1, r2, . . . each of which holds a single,
non-negative integer. A separate state register stores the current instruc-
tion to be executed. A computation of a register machine consists of a finite
sequence of instructions. Historically, the most common instruction set is the
following:

• inc(i): Increment the value of register ri by 1
• dec(i, m): If the value of register ri is greater than 0, then decrement this

value by 1. Otherwise, go to the mth instruction
• jump(m): Go to the mth instruction
• halt: Halt the computation

Example 2.38. Consider the natural-valued successor function n �→ n + 1.
Suppose the input is stored in register r1 and the output stored in register
r0. A register machine program computing the successor function is specified
by the algorithm SuccessorRegMachine. ♦

Algorithm 2.1 SuccessorRegMachine

Input: non-negative integer n, stored in register r1
1: dec(1, 4)
2: inc(0)
3: jump(1)
4: inc(0)
5: halt

6: return r0

2.3.5 Cellular Automata

A cellular automaton is another abstract computational model whose com-
putational power is equivalent to that of Turing machines. This model was
introduced by S. Ulam and J. von Neumann in the 1940s. A cellular automa-
ton consists of an infinite regular grid of cells. The grid is embedded into a
finite-dimensional space, and each cell is in one of a finite number of states.
All cells perform the same transition function on the states of neighboring
cells. These neighbors are selected relative to the location of the cell and
do not change during computation. A configuration of a cellular automaton
is the collection of the states of all cells. A cellular automaton evolves in a
discrete manner so that all cells provide a transition at time t leading from
the configuration at time t to a new configuration at time t + 1.
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The Game of Life is a two-dimensional grid-like cellular automaton intro-
duced by J. Conway in the 1970s. Each cell is in one of two states, live or
dead, and the neighborhood of a cell is constituted by the eight surrounding
cells. Any live cell dies if it has fewer than two live neighbors (loneliness) or
more than three live neighbors (overcrowding). Any live cell lives unchanged
if it exhibits two or three live neighbors. Any dead cell comes to life if it has
three neighbors. The Game of Life exhibits gliders, which are arrangements of
cells that move themselves across the grid. Gliders can interact so that they
perform computations. It can be shown that the Game of Life can emulate a
universal Turing machine.

An elementary cellular automaton is a one-dimensional cellular automaton
so that the state set is binary and the neighborhood of a cell is formed by
the cell itself and its left and right neighbors. Thus, there are 23 = 8 binary
patterns for the neighborhood and hence 28 = 256 transition functions. Each
of these 256 elementary cellular automata is indexed with an 8-bit binary
number, which describes the transition function, with the eight states listed
in reverse counting order.

Example 2.39. The 30th elementary cellular automaton (30=00011110) is
given by the transition function in Table 2.1. For instance, the pattern 110
describes the state of a cell and its left and right neighbors (i.e., the left and
center cells are on (1), and the right cell is off (0)). The transition rule says
that the middle cell will be off at the next step (Fig. 2.16). ♦

A one-dimensional blocked cellular automaton (BCA) C is based on an
infinite linear array of cells and a finite set of transition rules (u, v)→C (x, y)
over an alphabet Σ. Let ct(x) denote the symbol at cell x in configuration
ct at time t. A BCA uses the transition rules to rewrite pairs of cells in ct,
alternating between even and odd alignments of the pairings (Fig. 2.17): For
even t and even x, and for odd t and odd x,

(ct(x), ct(x + 1))→C (ct+1(x), ct+1(x + 1)) . (2.20)

The input of a BCA computation is a configuration which assigns the blank
symbol to all, but a finite number of cells.

Theorem 2.40. Each Turing machine can be simulated by a one-dimensional
blocked cellular automaton.

Proof. Define a one-dimensional BCA that reproduces the space-time history
of the tape of a Turing machine. �

Table 2.1 Transition function of the 30th elementary cellular automaton.

Current states 111 110 101 100 011 010 001 000

New state for center 0 0 0 1 1 1 1 0
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Fig. 2.16 Evolution of the 30th elementary cellular automaton starting from a single
on-cell after nine steps.
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Fig. 2.17 Transition rule (u, v)→C (x, y) in BCA.

2.4 Formal Grammars

Formal grammars were first studied by the linguist N. Chomsky in the late
1950s and provide another formalism for universal computation.

2.4.1 Grammars and Languages

A (formal) grammar is a quadruple G = (Σ, V, P, S) consisting of a finite set
of terminal symbols Σ, a finite set of non-terminal symbols V with Σ∩V = ∅,
a finite set of production rules P ⊆ (Σ ∪ V )+× (Σ ∪ V )∗, and a start symbol
S ∈ V . A production rule (u, v) ∈ P is also written as u→G v.

A grammar allows the derivation of strings over Σ from the start symbol.
For this, let u, v ∈ (Σ ∪ V )∗. We write u ⇒G v, if u and v have the form
u = xyz and v = xy′z, where x, z ∈ (Σ ∪ V )∗ and y →G y′.

A derivation of a string w ∈ (Σ ∪ V )∗ in G is a finite sequence of strings
(w0, . . . , wn) so that w0 = S, wn = w, and wi ⇒G wi+1 for each 0 ≤ i ≤ n−1.
Let ∗⇒G denote the reflexive, transitive closure of ⇒G. Then a derivation of
w in G exists if and only if S

∗⇒G w. The language of G is the set of all
strings over Σ derived in G,

L(G) = {w ∈ Σ∗ | S ∗⇒G w} . (2.21)
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Example 2.41. Consider the grammar G = (Σ, V, P, S) with Σ = {a, b, c},
V = {S, B}, and P = {(S, aBSc), (S, abc), (Ba, aB), (Bb, bb)}. Some deriva-
tions in G are

• S ⇒G abc,
• S ⇒G aBSc⇒G aBabcc⇒G aaBbcc⇒G aabbcc,
• S ⇒G aBSc ⇒G aBaBScc ⇒G aBaBabccc

∗⇒G aaaBBbccc
∗⇒G

aaabbbccc.

The language of G consists of all strings of the form anbncn, n ≥ 1. ♦

2.4.2 Chomsky’s Hierarchy

The Chomsky hierarchy introduced by N. Chomsky (1956) is a containment
hierarchy of four classes of formal grammars given as follows:

• Each grammar is automatically of type-0 or recursively enumerable.
• A grammar G is of type-1 or context-sensitive if each production rule

u→G v is length preserving, that is, |u| ≤ |v|, where u, v ∈ (Σ ∪ V )∗.
• A grammar G is of type-2 or context-free if each production rule has the

form A→G w, where A ∈ V and w ∈ (Σ ∪ V )∗.
• A grammar G is of type-3 or regular if each production rule has the shape

A→G a or A→G aB, where A, B ∈ V and a ∈ Σ ∪ {ε}.
A language L is of type-0 (type-1, type-2, type-3) if there is a respective
grammar G of type-0 (type-1, type-2, type-3) so that L(G) = L.

Example 2.42. The language L = {an | n ≥ 0} is regular, because L is
generated by the grammar G = {{a}, {S}, {(S, aS), (S, ε)}, S). ♦
Example 2.43. The language L = {anbn | n ≥ 1} is context-free, as L is
generated by the grammar G = {{a, b}, {S}, {(S, aSb), (S, ab)}, S). ♦
Example 2.44. The language L = {anbncn | n ≥ 1} is context-sensitive, for L
is generated by the grammar in Example 2.41. ♦

The following inclusions are obvious.

Theorem 2.45. Regular languages are context-free, context-free languages
are context-sensitive, and context-sensitive languages are recursively enumer-
able.

A context-sensitive grammar is in Kuroda normal form if all production rules
are of the form A→G a, A→G B, A→G BC, or AB →G CD, where a is a
terminal symbol and A, B, C, and D are non-terminal symbols.

Theorem 2.46. Each grammar in Kuroda normal form is context-sensitive.
For each context-sensitive grammar G with ε �∈ L(G) there exists a grammar
G′ in Kuroda normal form so that L(G′) = L(G).
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Proof. The first statement follows from the definitions. Let G = (Σ, V, P, S)
be a context-sensitive grammar with ε �∈ L(G). Define a grammar G′ =
(Σ, V ′, P ′, S) as follows:

• Each terminal symbol a in P is replaced by a new non-terminal symbol
Aa, and the production rule Aa →G′ a is added.

• Each production rule of the form A →G A1 . . . Ak, k ≥ 3, is replaced
by the following production rules: A →G′ A1B1, Bi →G′ Ai+1Bi+1 for
1 ≤ i ≤ k − 2, and Bk−1 →G′ Ak, where B1, . . . , Bk−1 are new non-
terminals.

• Each production rule of the shape A1 . . . Ak →G B1 . . . Bl, 2 ≤ k ≤ l and
l ≥ 3, is substituted by the following production rules: A1A2 →G′ B1C1,
CiAi+2 →G′ Bi+1Ci+1 for 1 ≤ i ≤ k − 2, Ci →G′ Bi+1Ci+1 for k − 1 ≤
i ≤ l − 2, and Cl−1 →G′ Bl, where C1, . . . , Ck−2 are new non-terminals.

The grammar G′ has the required properties. �

2.4.3 Grammars and Machines

Each class of type-i grammars corresponds to an abstract machine model
(Table 2.2). While automata are analytic in the sense that they describe how
to read a language, grammars are synthetic in the sense that they address
how to write a language.

Theorem 2.47. The languages described by regular grammars can be recog-
nized by finite state automata, and vice versa.

Proof. Let M = (Σ, S, δ, s0, F ) be a finite state automaton. Define a regular
grammar G = (Σ, V, P, S) with V = S, S = s0, and production set P =
{(s, as′) | s a→M s′} ∪ {(s, a) | s a→M s′, s′ ∈ F}. A string x = a1 . . . an ∈ Σ∗

lies in L(M) if and only if there is a sequence of states (s0, . . . , sn) so that
δ(si−1, ai) = si, 1 ≤ i ≤ n, and sn ∈ F . This means that there is a derivation
in G so that s0 ⇒G a1s1 ⇒G . . .⇒G a1 . . . an−1sn−1 ⇒ x, which is equivalent
to x ∈ L(G).

Conversely, let G = (Σ, V, P, S) be a regular grammar. Define a non-
deterministic finite state automaton M = (Σ, S, δ, S0, F ) so that S = V ∪{X},

Table 2.2 The Chomsky hierarchy.

Grammar Language Machine

type-0 recursively enumerable Turing machine
type-1 context-sensitive linearly restricted Turing machine
type-2 context-free pushdown automaton
type-3 regular finite state automaton
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X �∈ V , S0 = {S}, F = {S, X} if (S, ε) ∈ P and F = {X} if (S, ε) �∈ P , and
δ(A, a) = {B | (A, aB) ∈ P} ∪ {X | (A, a) ∈ P}. A non-empty string x =
a1 . . . an ∈ Σ∗ belongs to L(G) if and only if there is a derivation in G of the
form S ⇒G a1A1 ⇒G . . .⇒G a1 . . . an−1An−1 ⇒ x. This means that there is
a sequence of states (A1, . . . , An−1) so that A1 ∈ δ(S, a1), Ai ∈ δ(Ai−1, ai),
2 ≤ i ≤ n − 1, and X ∈ δ(An−1, an), which is equivalent to x ∈ L(M).
Moreover, ε ∈ L(G) if and only if ε ∈ L(M). �
Theorem 2.48. Formal grammars generate recursively enumerable lan-
guages and can be recognized by Turing machines, and vice versa.

Proof. Let G be a type-0 grammar. We informally describe a Turing machine
M , which accepts L = L(G). Let x be an input string. The Turing machine
M iteratively picks (in a deterministic fashion) a rule (u, v) ∈ P and searches
the tape if it contains v as a substring. If so, M replaces the string v with
the string u. The machine terminates exactly when the tape only contains
the start symbol S. But x ∈ L if and only if there is a derivation S

∗⇒G x.
By reversing the order of this derivation, we obtain a computation of M so
that x ∈ L(M). �
Theorem 2.49 (Type-3 Pumping Lemma). If L is a regular language
over Σ, then there is a non-negative integer n so that each string x ∈ L of
length at least n can be written in the form x = uvw so that |v| ≥ 1, |uv| ≤ n,
and uviw ∈ L for all integers i ≥ 0.

Proof. Let L be a regular language. By Theorem 2.47, there is a finite state
automaton M so that L = L(M). Let n be the number of states of M .
Consider a string x of length n accepted by M , so when reading x, the
automaton runs through n + 1 states. By the pigeonhole principle, at least
two of these states are the same, which shows that M runs in a loop. Consider
the decomposition x = uvw so that the state after reading u equals the state
after reading uv. This decomposition has the required properties. �
Example 2.50. The language {anbn | n ≥ 1} is context-free in Example 2.43,
but not regular in view of the Pumping Lemma 2.49. ♦
Theorem 2.51 (Type-2 Pumping Lemma). If L is a context-free lan-
guage over Σ, then there is a non-negative integer n so that each string x ∈ L
of length at least n can be written in the form x = uvwyz so that |vy| ≥ 1,
|uwy| ≤ n, and uviwyiz ∈ L for all integers i ≥ 0.

Example 2.52. The language {anbncn | n ≥ 1} is context-sensitive in Exam-
ple 2.44, but not context-free in view of the Pumping Lemma 2.51. ♦

2.4.4 Undecidability

In view of the binary encoding of Turing machines in the section on universal
Turing machines, define the ith Turing machine as the Turing machine Mi



2.4 Formal Grammars 37

whose encoding is the ith binary string wi. However, many non-negative
integers do not correspond to the encoding of any Turing machine such as
11101, because it does not begin with 0. If the ith binary string is not a valid
encoding of a Turing machine, then the ith Turing machine is taken to be
the Turing machine with one state and no transitions, and thus L(Mi) = ∅.
Define the diagonalization language as the language Ld consisting of all binary
strings wi so that wi is not in L(Mi).

Theorem 2.53. The diagonalization language Ld is not recursively enumer-
able.

Proof. Apply a diagonalization argument. Assume that Ld is recursively
enumerable. Then by Theorem 2.48, there is a Turing machine M so that
L(M) = Ld. Consequently, M = Mi for some non-negative integer i. But by
definition wi ∈ Ld if and only if wi �∈ L(M) contradicting the hypothesis. �

A language L is called recursive if there is a Turing machine M so that
L = L(M) and for any input string x that lies in L the machine accepts and
halts, while for any input string x that lies not in L the machine accepts and
never enters a final state.

Theorem 2.54. Each recursive language is recursively enumerable. Each
regular, context-free, or context-sensitive language is recursive.

Theorem 2.55. If L is a recursive language, so is the complement L.

Proof. Let M be a Turing machine so that L(M) = L. Derive a Turing
machine M from M by swapping the final and non-final states. Since M is
guaranteed to halt, M is also guaranteed to halt. Furthermore, M accepts
those strings that M does not accept, and vice versa. �
Theorem 2.56. The universal language Lu is recursively enumerable but not
recursive.

Proof. In view of the proof of Theorem 2.32, the language Lu is recursively
enumerable. Assume that Lu is recursive. Then by Theorem 2.55, the com-
plement Lu is recursive, too. Thus there exists a Turing machine M so that
L(M) = Lu. For the input wi, the machine M determines whether Mi accepts
wi. That is, M accepts wi if and only if wi �∈ Lu. Thus M accepts the diag-
onalization language Ld contradicting Theorem 2.53. �

Recursive languages capture the notion of decidability. A language L is
called decidable if it is a recursive language. Indeed, a Turing machine accept-
ing a recursive language L computes the characteristic function of L,

χL(x) =
{

1 if x ∈ L,
0 otherwise. (2.22)
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A language is called undecidable if it is not recursive. A recursively enumer-
able language L is semi-decidable in the sense that a Turing machine accept-
ing L will halt if the input lies in L and will otherwise eventually run forever.
For instance, the universal language Lu is semi-decidable by Theorem 2.56,
while the diagonalization language Ld is not semi-decidable by Theorem 2.53.
The most prominent undecidable problem is the so-called halting problem.
For this, consider the binary language Lh = {wi |Mi with input wi halts}.

Theorem 2.57 (Halting Problem). The language Lh is undecidable.

Proof. Suppose L = Lh is recursive. Then there is a Turing machine M
computing χL. Define a Turing machine M ′ with binary input so that M ′

with input x halts if χL(x) = 0, and M ′ with input x never halts if χL(x) = 1.
Apply a diagonalization argument. For this, there is a non-negative integer
i so that M ′ = Mi. Then M ′ with input wi halts if and only if χL(wi) = 0.
That is, wi �∈ L, which is equivalent to Mi with input wi never halts. A
contradiction. �

A concrete undecidable problem that has nothing to do with the abstrac-
tion of the Turing machine is Post’s correspondence problem (PCP) intro-
duced by E. Post in 1946. Let Σ be an alphabet. An instance of PCP consists
of two sequences of strings over Σ, U = (u1, . . . , un) and V = (v1, . . . , vn).
A solution of this instance of PCP is a sequence of one or more integers
(i1, i2, . . . , ik) so that ui1ui2 . . . uik

= vi1vi2 . . . vik
.

Example 2.58. Consider an instance of the binary PCP given by the sequences
U = (1, 10, 10111) and V = (111, 0, 10). This instance has the solution
(3, 1, 1, 2), since u3u1u1u2 = 101111110 = v3v1v1v2. ♦

PCP can be considered as a language. To this end, the alphabet of a PCP
instance with up to 2m symbols can be encoded by m-ary binary numbers.
In this way, each PCP instance can be encoded by a string in a 3-symbol
alphabet consisting of 0, 1, and the “comma” symbol. Such a string starts
with the number of pairs, n, in binary, followed by a comma, followed by
both sequences of strings so that the strings are separated by commas and
their symbols are encoded as binary numbers. For instance, the above binary
PCP is encoded by the string 11, 1, 10, 10111, 111, 0, 10.

Theorem 2.59. Post’s correspondence problem is undecidable.

Proof. (Sketch) First, PCP is equivalent to a modified Post’s correspondence
problem (MPCP). An instance of MPCP consists of two sequences of strings
over Σ, U = (u1, . . . , un) and V = (v1, . . . , vn), and a solution of this instance
is a sequence of integers (i1, i2, . . . , ik), k ≥ 0, so that u1ui1ui2 . . . uik

=
v1vi1vi2 . . . vik

. Thus the strings u1 and v1 are forced to be prefixes of each
solution.
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Let M be a Turing machine so that L(M) = Lu. Claim that there is an
MPCP instance so that M accepts a string x if and only if the MPCP instance
has a solution. Indeed, the computation of the Turing machine M on input
x can be simulated by an MPCP instance, where the forced strings u1 and
v1 provide the initial state: u1 = # and v1 = #s0x#. As Lu is undecidable,
the result follows. �

Another prominent undecidable problem is Wang’s tiling problem, first
stated by H. Wang in the 1960s. A tiling of the plane is a collection of plane
figures that fills the plane with no gaps and overlaps. Today, tilings are per-
haps best known for their use in the art of the Dutch painter M.C. Escher.
The tiling problem considers plane figures given by unit-sized squares, called
tiles , with colored edges. The task is to aggregate tiles by placing them
next to each other without space so that neighboring tiles have the same
color along their common edges. These aggregates are termed tilings. Notice
that the tiles cannot be rotated or reflected, and the set of different tiles
in a tiling is assumed to be finite. Wang’s tiling problem is to decide
whether a tiling of the plane can be obtained from a given finite set of tiles
(Fig. 2.18).

Theorem 2.60. Wang’s tiling problem is undecidable.

Proof. Create a set of tiles that fit together uniquely to reproduce the space-
time history of the tape of a Turing machine. Consequently, if the Turing
machine halts then the attemped tiling gets stuck, and if the Turing machine
runs forever then a tiling of the (half) plane exists. �
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Fig. 2.18 A set of 13 tiles with 5 colors providing an aperiodic tiling of the plane as
described by K. Culik II.
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2.5 Combinatorial Logic

An electronic computer is composed of digital circuits that can be considered
as a network of electronically implemented logic gates. A logic gate performs
a logic operation on one or more logic inputs (e.g., 0 for low voltage and 1
for high voltage) and produces a single logic output. The logic operations
follow Boolean logic, named after G. Boole who first defined an algebraic
system of logic in the mid-19th century. Digital circuits are divided into
combinatorial and sequential circuits. Combinatorial circuits are described by
Boolean functions in which output signals depend only on the input signals,
while sequential circuits are modeled by finite state automata in which output
signals depend on the input signals and the internal states.

2.5.1 Boolean Circuits

Let B = {0, 1}. An n-ary Boolean function is a mapping f : B
n → B. Each

such mapping describes the input/output behavior of a combinatorial circuit
with n input signals and one output signal (Fig. 2.19). The set of all n-ary
Boolean functions f : B

n → B is denoted by Fn. The number of n-ary Boolean
functions is |Fn| = 22n

.
The 0-ary Boolean functions are the constant functions, the zero function

0 :�→ 0 and the unit function 1 :�→ 1.
The unary Boolean functions are the identity mapping id : b �→ b, negation

¬ : b �→ ¬b, and the constant mappings 0 : b �→ 0 und 1 : b �→ 1 (Table 2.3).
Among the sixteen binary Boolean functions, the most important are the

conjunction ∧ : (b1, b2) �→ b1 ∧ b2 and the disjunction ∨ : (b1, b2) �→ b1 ∨
b2 (Table 2.4). The digital circuits corresponding to negation, conjunction,
and disjunction are called NOT gate or inverter , AND gate, and OR gate,
respectively (Fig. 2.20).

Combinatorial circuits often have more than one output signal. Let m
and n be positive integers. An n-ary, m-adic Boolean function is a mapping
F : B

n → B
m. Such a Boolean function describes m combinatorial circuits,

f

b1

. . .

bn

f(b)

Fig. 2.19 An n-ary Boolean function f .
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Table 2.3 The unary Boolean functions.

b id(b) ¬b 0 1

0 0 1 0 1
1 1 0 0 1

Table 2.4 Conjunction and disjunction.

b1 b2 b1 ∧ b2 b1 ∨ b2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

�

�

b1

b2
b1 ∧ b2

�

�

b1

b2
b1 ∨ b2

�

�

�b1 ¬b1

Fig. 2.20 Logic gates: AND, OR, and NOT.

each of which is given by an n-ary Boolean function operating on the same
input (Fig. 2.21). Therefore, an n-ary, m-adic Boolean function is an m-tuple
F of n-ary Boolean functions f1, . . . , fm so that

F (b) = (f1(b), . . . , fm(b)), b ∈ B
n . (2.23)

f1

. . .

fm

b1

. . .

bn

f1(b)

. . .

fm(b)

�

�

Fig. 2.21 An n-ary, m-adic Boolean function F = (f1, . . . , fm).
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2.5.2 Compound Circuits

Let f1, . . . , fm be n-ary Boolean functions. Consider a digital circuit in which
these Boolean functions process a common input signal in parallel and feed
their output into a common m-ary Boolean function f (Fig. 2.22). This circuit
is described by the n-ary Boolean function g = f(f1, . . . , fm) so that

g(b) = f(f1(b), . . . , fm(b)), b ∈ B
n . (2.24)

In particular, consider Boolean functions composed of AND, OR, and NOT
gates,

(f1 ∧ f2)(b) = f1(b) ∧ f2(b),
(f1 ∨ f2)(b) = f1(b) ∨ f2(b),

(¬f1)(b) = ¬f1(b), b ∈ B
n .

Example 2.61. Several Boolean functions composed of NAND gate ↑ and
NOR gate ↓ are illustrated in Table 2.5. ♦

f1

. . .

fm

f

b1

. . .

bn

f(f1(b), . . . , fm(b))

�

�

Fig. 2.22 The Boolean function g = f(f1, . . . , fm).

Table 2.5 Compound Boolean functions.

b1 b2 ↑ (b) ↓ (b) (¬ ↑)(b) (↑ ∧ ↓)(b) (↑ ∨ ↓)(b)
0 0 1 1 0 1 1
0 1 1 0 0 0 1
1 0 1 0 0 0 1
1 1 0 0 1 0 0
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Theorem 2.62. Let n be a non-negative integer. The set of all n-ary Boolean
functions forms with conjunction and disjunction a Boolean algebra Fn. That
is, for all n-ary Boolean functions f , f1, f2, and f3,

• Commutativity:

f1 ∧ f2 = f2 ∧ f1 (2.25)
f1 ∨ f2 = f2 ∨ f1 . (2.26)

• Associativity:

f1 ∧ (f2 ∧ f3) = (f1 ∧ f2) ∧ f3 (2.27)
f1 ∨ (f2 ∨ f3) = (f1 ∨ f2) ∨ f3 . (2.28)

• Absorption:

f1 ∧ (f1 ∨ f2) = f1 (2.29)
f1 ∨ (f1 ∧ f2) = f1 . (2.30)

• Distributivity:

f1 ∧ (f2 ∨ f3) = (f1 ∧ f2) ∨ (f1 ∧ f3) (2.31)
f1 ∨ (f2 ∧ f3) = (f1 ∨ f2) ∧ (f1 ∨ f3) . (2.32)

• Complementarity:

f ∧ ¬f = 0 (2.33)
f ∨ ¬f = 1 . (2.34)

In the following, an algebraic notation for the operations of the Boolean
algebra Fn is used,

fg = f ∧ g, f + g = f ∨ g, and f = ¬f . (2.35)

An expression of Boolean functions is also termed Boolean expression and is
evaluated according to the priorities assigned to the logical operations: Nega-
tion has the highest priority, multiplication the next highest and addition the
lowest. In this way, we have (f + g) + (fg) = f + g + fg.

2.5.3 Minterms and Maxterms

The ith projection in Fn is the n-ary Boolean function

xi : B
n → B : b �→ bi, 1 ≤ i ≤ n . (2.36)
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The functions xi are termed variables , and both xi and xi are called literals.
Write

x1
i = xi and x0

i = xi (2.37)

and assign to each element a ∈ B
n two n-ary Boolean functions

ma = xa1
1 · · ·xan

n , (2.38)
Ma = xa1

1 + . . . + xan
n . (2.39)

Lemma 2.63. For all elements a, b ∈ B
n,

ma(b) =
{

1 if a = b,
0 otherwise, (2.40)

and

Ma(b) =
{

1 if a �= b,
0 otherwise. (2.41)

Proof. By definition, ma(b) = ba1
1 . . . ban

n = 1 if and only if bi = ai for all
1 ≤ i ≤ n, and Ma(b) = ba1

1 + . . . + ban
n = 0 if and only if bi = ai for all

1 ≤ i ≤ n, �
The Boolean functions ma and Ma, a ∈ B

n, are called the minterms and
maxterms of Fn, respectively.

Example 2.64. In view of the Boolean algebra F3, the minterms are

m0 = x1x2x3, m3 = x1x2x3, m6 = x1x2x3,
m1 = x1x2x3, m4 = x1x2x3, m7 = x1x2x3,
m2 = x1x2x3, m5 = x1x2x3,

and the maxterms are

M0 = x1 + x2 + x3, M3 = x1 + x2 + x3, M6 = x1 + x2 + x3,
M1 = x1 + x2 + x3, M4 = x1 + x2 + x3, M7 = x1 + x2 + x3,
M2 = x1 + x2 + x3, M5 = x1 + x2 + x3,

where the index a = (a2, a1, a0) corresponds to the decimal equivalent
a2 · 22 + a1 · 2 + a0. ♦

2.5.4 Canonical Circuits

An important result in combinatorial logic is that each Boolean function can
be represented by AND, OR, and NOT gates.
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Theorem 2.65 (Canonical Disjunctive Normal Form, CDNF). Each
n-ary Boolean function f can be represented in the form

f =
∑

a∈Bn

f(a)=1

ma . (2.42)

Proof. The assertion is clear in case of n = 0. Let n > 0. Observe that each
f ∈ Fn can be written in the form

f = xng + xnh ,

where g, h ∈ Fn−1 so that

g(b1, . . . , bn−1) = f(b1, . . . , bn−1, 1) ,

h(b1, . . . , bn−1) = f(b1, . . . , bn−1, 0) .

By induction hypothesis,

g =
∑

a∈Bn−1
g(a)=1

m(n−1)
a and h =

∑

a∈Bn−1
h(a)=1

m(n−1)
a .

Hence,

f = xng + xnh

= xn

∑

a∈Bn−1
g(a)=1

m(n−1)
a + xn

∑

a∈Bn−1
h(a)=1

m(n−1)
a

=
∑

a∈Bn−1
(xng)(a,1)=1

xnm(n−1)
a +

∑

a∈Bn−1
(xnh)(a,0)=1

xnm(n−1)
a

=
∑

a∈Bn

f(a)=1

ma .

�
The following result can be similarly proved.

Theorem 2.66 (Canonical Conjunctive Normal Form, CCNF). Each
n-ary Boolean function f can be represented in the form

f =
∏

a∈Bn

f(a)=0

Ma . (2.43)

Example 2.67. A light should be independently controlled by two switches.
The corresponding combinatorial circuit has two input signals associated with
the switches and one output signal for light control. Each switch can be
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in two positions, on (1) and off (0). Suppose at the beginning that both
switches are off and the light is off. If one of the switches is pressed, the
light goes on. Then if one of the switches is pressed again, the light goes
off, and so on. The corresponding Boolean function f is the exclusive OR
(Table 2.6), which has the CDNF f = m10 + m01 = x1x2 + x1x2 and the
CCNF f = M00M11 = (x1 + x2)(x1 + x2) (Fig. 2.23). ♦

2.5.5 Adder Circuits

Adder circuits belong to the simplest Boolean functions.

Half-Adder

A half-adder is a combinatorial circuit for adding two bits. It can be described
by a 2-ary, 2-adic Boolean function H = (sH , cH), where sH computes the
sum and cH provides the carry bit (Table 2.7). The half-adder has the dis-
junctive normal form (Fig. 2.24)

sH = x1x2 + x1x2 and cH = x1x2 . (2.44)

Table 2.6 Exclusive OR.

b1 b2 f(b)

0 0 0
1 0 1
0 1 1
1 1 0

�

�

�

�
�

�

�

�
b1

b2
�

�
f(b)

Fig. 2.23 Combinatorial circuit in DNF for light control. (The two inverters are
indicated by black circles.)
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Table 2.7 Half-adder.

b1 b2 sH(b) cH(b)

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

H
s

c

Fig. 2.24 Symbol for half-adder.

Full-Adder

A full-adder is a combinatorial circuit for adding three bits. It can be
described by a 3-ary, 2-adic Boolean function V = (sV , cV ). The function
sV computes the sum and the function cV provides the carry bit (Table 2.8).
Clearly,

sV (x1, x2, x3) = sH(x1, sH(x2, x3)), (2.45)
cV (x1, x2, x3) = cH(x1, sH(x2, x3)) + cH(x2, x3) . (2.46)

Therefore, a full-adder can be implemented by two half-adders and an OR
gate (Fig. 2.25).

Adder

An adder is a combinatorial circuit for adding two n-ary binary numbers.
It can be implemented by a 2n-ary, (n + 1)-adic Boolean function, which is
composed of n serially connected full-adders. In particular, the full-adder for
the lowest bit position can be realized by a half-adder (Fig. 2.26).

Table 2.8 Full-adder.

b1 b2 b3 sV (b) cV (b)

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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H

s

c
H

s

c

�

�

b1

b2

b3

sV

cV

Fig. 2.25 A full-adder.

V
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u V
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u H

s
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a2 a1 a0b2 b1 b0

c2 c1 c0

c3

Fig. 2.26 An adder for 3-ary binary numbers.

2.6 Computational Complexity

Alan Turing’s study of what could and what could not be computed was
extended by S. Cook in the late 1960s. He was able to separate those problems
that can be solved efficiently by computers from those problems that can in
principle be solved but in practice take so much time that computers are
useless for all but small problem instances.

2.6.1 Time Complexity

The runtime of a computer algorithm provides the duration of its execution,
from beginning to termination. Runtime can be measured in milliseconds.
However, this measurement depends on several parameters such as computer,
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compiler, operating system, programming tricks. Runtime should also be a
measure for algorithms. Therefore, the runtime of a program is measured as
follows:

• For each input, the number of elementary operations is counted.
• The runtime is given as a function of the number of elementary operations

in dependence of the size of the input.

The elementary operations are assignments (x := 3), comparisons (x < y),
arithmetic and logical operations (x + y, x∧ y), and array access (a[i]). Non-
elementary operations are loops, conditional statements, and procedure calls.

Example 2.68. BubbleSort is a list-sorting algorithm, which interchanges
two elements in a list if they are in the wrong order (Alg. 2.2). BubbleSort

consists of a two-fold nested loop, which is executed for the n(n− 1)/2 pairs

(2, n), (2, n− 1), . . . , (2, 2), (3, n), . . . , (3, 3), . . . , (n, n) .

The loop body consists of four elementary operations. Suppose that each
elementary operation has runtime t. Then the algorithm has a total runtime
of 4tn(n− 1)/2. ♦

Algorithm 2.2 BubbleSort(L)
Input: List L of n elements
Output: List L is sorted in ascending order
1: for i = 2 to n do
2: for j = n downto i do
3: if L[j − 1] > L[j] then
4: h := L[j]
5: L[j] := L[j − 1]
6: L[j − 1] := h
7: end if
8: end for
9: end for

2.6.2 Infinite Asymptotics

The asymptotic behavior of functions is described by the Landau notation.
Let f : N0 → R

+
0 and g : N0 → R

+
0 be mappings. The expression f = O(g)

says that the function f is asymptotically bound by the function g, that is,

∃n0 ∈ N ∃ c ∈ R
+ ∀n ∈ N [n ≥ n0 ⇒ f(n) ≤ c · g(n)] . (2.47)
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The Landau symbol O is called “big Oh” after E. Landau. The notation
f = O(g) stands for the more precise notation f ∈ O(g), where O(g) is the
set of all functions f so that f = O(g).

Example 2.69. • f(n) = 3 = O(1), since 3 ≤ 3 · 1.
• f(n) = n + 4 = O(n), as n + 4 ≤ 2n for all n ≥ 4.
• f(n) = 4n + 6 = O(n), for 4n + 6 ≤ 5n for all n ≥ 6.
• f(n) = n(n− 1)/2 = O(n2), because n(n− 1)/2 ≤ n2 for all n ≥ 1.
• f(n) = 2n2 + 4n + 6 = O(n2), since 2n2 + 4n + 6 ≤ 3n2 for all n ≥ 6.

♦
The Landau notation allows the consideration of algorithms at a coarser level
at which constants are eliminated and upper bounds are formed. The big-O
notation leads to a classification of algorithms via runtime (Table 2.9). To
solve practical problems, algorithms with polynomial runtime O(nc), c ≥ 0,
are needed, while algorithms with exponential runtime O(cn), c > 1, are
considered to be impractical.

Example 2.70. Suppose all elementary operations have runtime O(1). Then
BubbleSort has runtime O(n2), since the body has runtime O(1) and the
loop is executed n(n− 1)/2 times. ♦

Let f : N0 → R
+
0 and g : N0 → R

+
0 be mappings. The expression f = o(g)

says that the function g asymptotically grows faster than the function f .
Formally, it means that the limit of f(n)/g(n) is zero. That is,

∀ c > 0 ∃n0 ∈ N ∀n ∈ N [n ≥ n0 ⇒ 0 ≤ f(n) < c · g(n)] . (2.48)

The Landau symbol o is called “little oh” and o(g) represents the set of all
functions f so that f = o(g).

Example 2.71. Clearly, 1
n = o

(
1√
n

)
, n2 = o(en), and log n = o(n). ♦

Table 2.9 Common classes of functions.

Notation Name Typical Algorithm

O(1) constant determine if number is even or odd
O(log n) logarithmic find item in a sorted list
O(n) linear find item in an unsorted list
O(n log n) log linear sort a list (heap sort)
O(n2) quadratic sort a list (bubble sort)
O(nc), c ≥ 2 polynomial find shortest paths in a graph
O(2n) exponential find Hamiltonian paths in a graph
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2.6.3 Decision Problems

A decision problem requires an answer “yes” or “no”. Decision problems are
divided into two classes. The class P consists of all decision problems that
are solvable in polynomial time. The class NP embraces all decision problems
with the property that for each problem instance answered “yes”, there is a
proof for the answer which can be verified in polynomial time. By definition,
P ⊆ NP. It is conceivable that the class NP is larger than the class P. Today,
this is one of the most famous open problems in Computer Science.

Example 2.72. Let G = (V, E) be a graph. A subset U of V is called inde-
pendent in G if uv �∈ E for all u, v ∈ U . Consider the decision problem of
finding for each graph G and each integer k > 0 an independent set U in G
so that |U | ≥ k. Claim that this problem lies in NP. Indeed, each subset U

of V has
(|U|

2

)
two-element subsets uv with u, v ∈ U . Put n = |V | and so(|U|

2

)
= O(n2). The test, whether uv lies in E, can be performed in constant

time. Thus O(n2) steps are necessary to test whether the set U is independent
in G. ♦

Let D and D′ be decision problems. A polynomial transformation of D into
D′ is an algorithm with polynomial runtime, which transforms each instance
I of D into an instance I ′ of D′ so that the answers of both instances I and
I ′ are identical. Write D ∝ D′ if such a transformation exists.

Example 2.73. Let G = (V, E) be a graph. A subset U ⊆ V is called a clique
in G if uv ∈ E for all u, v ∈ U . Consider the decision problem of finding for
each graph G and each integer k > 0 a clique U in G so that |U | ≥ k. This
problem belongs to the class NP.

Let G′ = (V, E′) be the graph complementary to G (i.e., uv ∈ E′ if and
only if uv �∈ E) (Fig. 2.27). The independent sets in G are exactly the cliques
in G′, and vice versa. The graph G′ can be derived from G in O(|V |2) steps.
Hence, the decision problem of finding in a graph an independent subset with
size at least k elements can be polynomially transformed into the decision
problem of finding in a graph a clique with size at least k. ♦
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A decision problem D is termed NP-complete if D ∈ NP and each problem
D′ in NP satisfies D′ ∝ D.

Theorem 2.74. Let D be an NP-complete decision problem. If D lies in P,
then P = NP.

Proof. Let D ∈ P be an NP-complete decision problem. Let A be an algo-
rithm solving D in polynomial time. Let D′ ∈ NP. By hypothesis, D′ ∝ D.
Thus there is an algorithm B with polynomial runtime, which transforms
each instance of D′ into an instance of D. Therefore, the composition of the
algorithms A and B solves each instance of D′ in polynomial time and hence
D′ ∈ P. �

The satisfiability problem was the first decision problem proven to be NP-
complete. Today, more than one thousand NP-complete problems are known.

Theorem 2.75 (Cook’s Theorem, SAT Problem). Let n be a non-
negative integer and let f be an n-ary Boolean function. The problem of
determining whether the function f is satisfiable (i.e., finding an input
(b1, . . . , bn) ∈ B

n so that f(b1, . . . , bn) = 1) is NP-complete.

Equivalently, let F be a Boolean expression in n variables. Determining
whether the expression F is satisfiable (i.e., finding a truth assignment for the
n variables in the expression F so that it becomes “true”) is NP-complete.

Theorem 2.76 (3-SAT Problem). Let F be a Boolean expression in n
variables given in conjunctive normal form (CNF) (i.e., a conjunction of
disjunctions (clauses) of literals). Suppose each disjunctive clause contains
at most three literals such as

F = (x2 + x3)(x1 + x2 + x3)(x1 + x2) .

The problem of finding a truth assignment of the variables in F so that F
becomes “true” is NP-complete.

Theorem 2.77 (Vertex Cover Problem). Let G = (V, E) be a graph and
let k > 0 be an integer. A vertex cover in G is a set of vertices V ′ ⊆ V so that
each edge is incident with at least one vertex in V ′. The problem of finding
in G a vertex cover of size at most k is NP-complete.

Example 2.78. In view of the graph G in Figure 2.1, the sets {v1, v4} and
{v2, v3} are vertex covers in G. ♦
Theorem 2.79 (Clique Problem). Let G be a graph and let k > 0 be an
integer. The problem of finding in G a clique of size at least k is NP-complete.

Example 2.80. In view of the graph G in Figure 2.1, the set {v2, v3, v4} forms
a clique in G. ♦
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Theorem 2.81 (Independent Vertex Set Problem). Let G be a graph
and let k > 0 be an integer. The problem of finding in G an independent set
of size at least k is NP-complete.

Example 2.82. In view of the graph G in Figure 2.1, the sets {v1, v2} and
{v1, v4} are independent in G. ♦
Theorem 2.83 (Set Cover Problem). Let A be a set, let {A1, . . . , An} be
a set of subsets of A, and let k > 0 be an integer. The problem of finding a
subset I of {1, . . . , n} so that

⋃
i∈I Ai = A and |I| ≤ k is NP-complete.

Theorem 2.84 (Vertex Coloring Problem). Let G = (V, E) be a graph
and let k > 0 be an integer. A coloring of G with k colors is a mapping
f : V → {1, . . . , k} which assigns colors to the vertices in G. A coloring must
assign different colors to adjacent vertices. The problem of coloring G with
at most k ≥ 3 colors is NP-complete.

Example 2.85. In view of the graph G in Figure 2.1, a 3-coloring of G is given
by f(v1) = 1, f(v2) = 1, f(v3) = 2, and f(v4) = 3. ♦
Theorem 2.86 (Matching Problem). Let G = (V, E) be a graph and let
k > 0 be an integer. A matching in G is a set of edges E′ ⊆ E so that no
two edges in E′ have a vertex in common. The problem of finding in G a
matching of size at least k is NP-complete.

Example 2.87. In view of the graph G in Figure 2.1, a matching in G is given
by {v1v3, v2v4}. This matching is perfect. ♦
Theorem 2.88 (Perfect Matching Problem). Let n > 0 be an even inte-
ger, and let G be a graph with n vertices. A perfect matching in G is a
matching in G with n/2 edges. The problem of finding in G a perfect match-
ing is NP-complete.

Theorem 2.89 (Edge-Dominating Set Problem). Let G = (V, E) be a
graph and let k > 0 be an integer. For each subset of edges E′ ⊆ E, let nG(E′)
be the set of all edges in G which have at least one vertex in common with
an edge in E′. If nG(E′) = E, then E′ is called an edge-dominating set in
G. The problem of finding in G an edge-dominating set of size at most k is
NP-complete.

Example 2.90. In view of the graph G in Figure 2.1, edge-dominating sets in
G are {v2v4} and {v3v4}. ♦
Theorem 2.91 (Bipartite Subgraph Problem). Let G be a graph and
let k > 0 be an integer. The problem of finding in G a bipartite subgraph with
at least k edges is NP-complete.

Theorem 2.92 (Hamiltonian Path Problem). Let G be a graph. A sim-
ple path in G is called Hamiltonian if it contains each vertex of G. The
problem of finding in G a Hamiltonian path is NP-complete.
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Example 2.93. The graph G in Figure 2.1 exhibits two Hamiltonian paths,
(v1, v3, v2, v4) and (v1, v3, v4, v2). ♦
Theorem 2.94 (Hamiltonian Cycle Problem). Let G be a graph. A sim-
ple cycle in G is called Hamiltonian if it contains each vertex of G. The
problem of finding in G a Hamiltonian cycle is NP-complete.

Theorem 2.95 (Steiner Tree Problem). Let k > 0 be an integer, let
G = (V, E) be a connected graph and let Z be a subset of V . A subtree
H = (U, F ) of G is called a Steiner tree for Z in G if Z ⊆ U and H has a
minimal number of edges among all subtrees of G that contain the vertices of
Z. In the case of Z = V , a Steiner tree in G is a spanning tree in G.

The problem of finding a Steiner tree H = (U, F ) for Z in G so that
k ≥ |F | is NP-complete. The problem of finding a Steiner tree H = (U, F )
for Z in G so that k ≥ |U \ Z| is NP-complete.

2.6.4 Optimization Problems

Combinatorial problems often arise in the form of optimization problems.
These problems can be classified by using a reduction technique. A Turing
reduction assigns to each decision problem D an optimization problem D′ so
that a decision algorithm A for D is used as a “subalgorithm” in a solution
algorithm B for D′. Additionally, B should have polynomial runtime if A has
polynomial runtime. Such a reduction is denoted by D′ ∝T D.

Example 2.96. Consider the decision problem of finding a clique of size at
least k in a graph of order n. The corresponding optimization problem aims
at finding a clique of maximum size in a graph. Let A be an algorithm solving
the decision problem. This algorithm can be used in a loop, which computes
in each step from k = n down to k = 1 an instance A(G, k) of the deci-
sion problem. As soon as an instance A(G, k) provides the answer “yes”, a
maximal clique is found and the optimization problem is solved. ♦

The analogue of NP-complete decision problems are NP-hard optimization
problems. A problem D is called NP-hard if there is an NP-complete problem
D′ so that D′ ∝T D. In Example 2.96, the optimization problem of finding a
maximal clique in a graph is NP-hard. In general, the optimization problems
corresponding to NP-complete decision problems are NP-hard.
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Chapter 3

Molecular Biology

Abstract Genetic information is passed with high accuracy from the parental
organism to the offspring and its expression governs the biochemical and
physiological tasks of the cell. Although different types of cells exist and are
shaped by development to fill different physiological niches, all cells have
fundamental similarities and share common principles of organization and
biochemical activities. This chapter gives an overview of general principles
of the storage and flow of genetic information. It aims to summarize and
describe in a broadly approachable way, from the point of view of molecular
biology, some general terms, mechanisms and processes used as a base for the
molecular computing in the subsequent chapters.

3.1 DNA

In the majority of living organisms the genetic information is stored in the
desoxyribonucleic acid (DNA), molecules that govern the development and
functions of the organisms. The high accuracy of duplication and transmission
of the DNA is determined by its structural features and the unique fidelity
of the proteins participating in this process.

3.1.1 Molecular Structure

DNA is composed of four nucleotides, also called bases: adenosine (A), cyti-
dine (C), guanosine (G), and thymidine (T), each of which consists of a phos-
phate group, a sugar (deoxyribose), and a nucleobase (pyrimidine – thymine
and cytosine, or purine – adenine and guanine). The nucleotides are cova-
lently linked through the sugar (deoxyribose) and phosphate residue and
form the backbone of one DNA strand (Fig. 3.1). These two different elements

Z. Ignatova et al., DNA Computing Models, 57
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Fig. 3.1 Schematic overview of the DNA structure. The phosphate group is shown
as a triangle, the sugar component is depicted as a square and together they form the
backbone. The double helix is stabilized by hydrogen bonds between A and T (two
hydrogen bonds) and G and C (three hydrogen bonds).

(sugar and the phosphate group) alternate in the backbone and determine
the directionality of the DNA: the end with the exposed hydroxyl group of
the deoxyribose is known as the 3’ end; the other end with the phosphate
group is termed the 5’ end.

Two single DNA strands assemble into a double-stranded DNA molecule,
which is stabilized by hydrogen bonds between the nucleotides. The chemical
structure of the bases allows an efficient formation of hydrogen bonds only
between A and T or G and C; this determines the complementarity principle,
also known as Watson-Crick base-pairing of the DNA double helix. The
A and T base pair aligns through a double hydrogen bond and the G and
C pair glues with a triple hydrogen bond, which is the reason for the higher
stability of the G–C Watson-Crick base pair over the A–T Watson-Crick base
pair. The overall stability of the DNA molecule increases with the increase
of the proportion of the G–C base pairs. The two single DNA strands are
complementarily aligned in a reverse direction: the one, called also a leading
strand, has a 5’ to 3’ orientation, whereas the complementary strand, called
lagging strand, is in the reverse 3’ to 5’ orientation (Fig. 3.1).

In aqueous solution the two single strands wind in an anti-parallel manner
around the common axis and form a twisted right-handed double helix with
a diameter of about 20 Å. The planes of the bases are nearly perpendicular to
the helix axis and each turn accommodates 10 bases. The wrapping of the two
strands around each other leads to a formation of two grooves: the major is
22 Å wide and the minor is 12 Å wide. This structure is known as B-DNA and
represents the general form of the DNA within the living cells. Alternatively
the DNA double helix can adopt several other conformations (e.g., A-DNA
and Z-DNA), which differ from the B-form in their dimensions and geometry.
Unlike the A-DNA which is also right-handed, the Z-DNA is left-handed and
the major and minor grooves show differences in width. The propensity to
adopt one of these alternative conformations depends on the sequence of
the polynucleotide chain and the solution conditions (e.g., concentrations of
metal ions, polyamines). The hybrid pairing of DNA and RNA strands has
under physiological conditions an A-form like conformation, while the Z-form
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is believed to occur during transcription of the DNA, providing a torsional
relief for the DNA double helix.

The concept of the DNA complementarity is crucial for its functionality
and activity. The base-pairing can be reversibly broken, which is essential for
the DNA replication. The non-covalent forces that stabilize the DNA dou-
ble helix can be completely disrupted by heating. The collapse of the native
structure and the dissociation of the double helix into two single strands
is called denaturation (Fig. 3.2). Under slow decrease in temperature, the
correct base pairing can be established again and the DNA renatures. The
process of binding of two single strands and the formation of a double strand
is known as annealing or hybridization. The annealing conditions need to be
established by a slow change of temperature, as a rapid decrease in tempera-
ture forces a fast renaturation and results in both intramolecular (within one
strand) and intermolecular (within different strands) base-pairing (Fig. 3.2).
Complementary stretches within one single strand that are in close proximity
can re-associate to partial double-stranded intramolecular structures, known
as foldback structures.

The DNA double helix is very stable; the entire network of hydrogen
bonds and hydrophobic interactions between the bases is responsible for its
global stability. Nevertheless, each single hydrogen bond is weak and short
stretches from the double-stranded DNA can even be opened at physiological
temperature with the help of initiation proteins. Each strand in the DNA
serves as a template for the replication machinery, with the DNA polymerase
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Fig. 3.2 Denaturation and renaturation of DNA.
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Fig. 3.3 Replication of DNA.

as a major player, replicating them in a complementary manner (Fig. 3.3).
The DNA replication is asymmetric and DNA polymerase elongates in the 5’
to 3’ direction only. The opposite DNA strand is discontinuously synthesized
again in the 5’ to 3’ direction as small fragments, called Okazaki fragments.
The Okazaki fragments are further covalently joined by DNA ligase. In each
replication cycle the double-stranded DNA template is replicated into two
identical copies.

3.1.2 Manipulation of DNA

In DNA computing, DNA is utilized as a substrate for storing information.
Depending on the model of DNA computation, information is stored in the
form of single-stranded DNA and/or double-stranded DNA molecules. This
stored information can be manipulated by enzymes. One class of enzymes,
restriction endonucleases, recognizes a specific short sequence of DNA, called
restriction site, and cuts the covalent bonds between the adjacent nucleotides
(Fig. 3.4). Restriction fragments are generated with either cohesive or sticky
ends or blunt ends.

DNA ligase covalently links the 3’ hydroxil end of one nucleotide with
5’ phosphate end of another, thus repairing backbone breaks (Fig. 3.5).
The exonucleases are enzymes that hydrolyze phosphodiester bonds from
either the 3’ or 5’ terminus of single-stranded DNA or double-stranded
DNA molecules and remove residues one at a time. Endonucleases can cut
individual covalent bonds within the DNA molecules, generating discrete
fragments.

BamHI

5′ − G|GATCC − 3′
3′ − CCTAG|G − 5′

SmaI

5′ − CCC|GGG − 3′
3′ − GGG|CCC − 5′

Fig. 3.4 Restriction sites of BamHI and SmaI. The restriction enzymes recognize
palindrome sequences with a two-fold rotational symmetry.
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Fig. 3.5 Ligase connects a sticky or b blunt ends of double-stranded DNA.

Polymerase Chain Reaction

The template DNA can be amplified in a polymerase chain reaction (PCR)
(Fig. 3.6). PCR is based on the interaction of DNA polymerase with DNA.
PCR is an iterative process, with each iteration consisting of the following
steps: annealing of the short single-stranded DNA molecules, called primers,
that complementary pair of the templates’ ends; extending of the primers in
the 5’ to 3’ direction by DNA polymerase by successively adding nucleotides
to the 3’ end of the primer; denaturating of the newly elongated double-
stranded DNA molecules to separate their strands; and cooling to allow
re-annealing of the short, newly amplified single-stranded DNAs. Each cycle
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Fig. 3.6 One cycle of PCR.
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doubles the number of target DNA molecules. Today, PCR is one of the
most fundamental laboratory techniques in modern molecular biology. PCR
is based on the interaction of DNA polymerase with DNA.

Parallel overlap assembly (POA) is a method to generate a pool of DNA
molecules (combinatorial library). Short single-stranded DNA molecules,
called also oligonucleotides, overlap after annealing and their sticky ends are
extended by DNA polymerase in 5’ to 3’ direction. Repeated denaturation,
annealing, and extension cycles increase the length of the strands. Unlike
PCR, where the target DNA strands double in every cycle, in POA, the
number of DNA strands does not change, only the length increases with the
cycle progression (Fig. 3.7).

The short, single-stranded DNA molecules (oligonucleotides) can be
designed by using available software (e.g., DNASequenceGenerator). The
GC-contents can be specified as input affecting the melting temperature of
the sequences. Oligonucleotides can be synthesized in vitro using PCR.

oligonucleotide mixture

a)

slow cooling

hybridized mixture

ligase

ligation product

b)

first cycle

second cycle

repeat cycle

Fig. 3.7 Synthesis methods for combinatorial libraries: a Annealing/ligation: The
arrow heads indicate the 3’ end. b POA: The thick arrow represents the synthesized
oligomers which are the input of the computation. The thin arrows represent the part
that is elongated by DNA polymerase. The arrow heads indicate the 3’ ends.



3.2 Physical Chemistry 63

3.2 Physical Chemistry

Computing with biological macromolecules such as DNA is based on a
fundamental physicochemical process. Therefore, knowledge about the
thermodynamics and kinetics of these processes is necessary.

3.2.1 Thermodynamics

The thermodynamics of physicochemical processes is concerned with energy
changes accompanying physical and chemical changes. This section addresses
the thermodynamics of DNA pairing and denaturation of DNA molecules.

Nearest Neighbor Model

The relative stability of a double-stranded DNA molecule appears to depend
primarily on the identity of the nearest neighbor bases. Ten different near-
est neighbor interactions are possible in any double-stranded DNA molecule.
These pairwise interactions are AA/TT, AT/TA, TA/AT, CA/GT, GT/CA, CT/GA,
GA/CT, CG/GC, GC/CG, and GG/CC, denoted in the direction of 5’ to 3’/3’
to 5’. The relative stability and temperature-dependent behavior of each
DNA nearest neighbor interaction can be characterized by Gibbs free energy,
enthalpy, and entropy. Gibbs free energy describes the potential of a reaction
to occur spontaneously; enthalpy provides the amount of heat released from
or absorbed by the system; and entropy measures the randomness or disor-
der of a system. The corresponding parameters presented in Table 3.1 were
derived from J. SantaLucia, Jr. and D. Hicks (2004) in 1 M NaCl at temper-
ature 37◦C. The Gibbs free energy ΔG◦ is related to the enthalpy ΔH◦ and
the entropy ΔS◦ by the standard thermodynamic relationship

ΔG◦ = ΔH◦ − TΔS◦ . (3.1)

As the Gibbs free energy data listed in Table 3.1 were calculated at 37◦C, the
ΔG◦ values at any other temperature can be computed by using the tabulated
enthalpy and entropy data. For instance, the relative stability of the GC/CG
pair at 50◦C is (−9.8 kcal) − [(323.15 K)(−0.0244 kcal/K)] = −1.915 kcal per
mol compared with −2.24 kcal/mol at 37◦C.

Gibbs Free Energy

The Gibbs free energy of a double-stranded molecule given by x = a1 . . . an,
with reverse complementary strand an . . . a1, is calculated as
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Table 3.1 Nearest neighbor thermodynamics. The units for ΔG◦ and ΔH◦ are
kcal/mol of interaction, and the unit for ΔS◦ is cal/K per mol of interaction. The
symmetry correction is applied only to self-complementary duplexes. The terminal
AT penalty applies to each end of a duplex that has terminal AT. A duplex with both
ends closed by AT pairs has a penalty of +1.0 kcal/mol for ΔG◦.

Interaction ΔH◦ ΔS◦ ΔG◦

AA/TT –7.6 –21.3 –1.00
AT/TA –7.2 –20.4 –0.88
TA/AT –7.2 –21.3 –0.58
CA/GT –8.5 –22.7 –1.45
GT/CA –8.4 –22.4 –1.44
CT/GA –7.8 –21.0 –1.28
GA/CT –8.2 –22.2 –1.30
CG/GC –10.6 –27.2 –2.17
GC/CG –9.8 –24.4 –2.24
GG/CC –8.0 –19.9 –1.84
Initiation +0.2 –5.7 +1.96
Terminal AT penalty +2.2 +6.9 +0.05
Symmetry correction 0.0 –1.4 +0.43

ΔG◦(x) = Δgi + Δgs +
n−1∑

i=1

ΔG◦(aiai+1/aiai+1) , (3.2)

where Δgi denotes the helix-initiation energy and Δgs is the symmetry
correction.

Example 3.1. Consider the double-stranded DNA molecule

5′ − GCAATGGC− 3′

3′ − CGTTACCG− 5′ .

The Gibbs free energy is given by

ΔG◦ = Δgi + Δgs + ΔG◦(GC/CG) + ΔG◦(CA/GT) + ΔG◦(AA/TT)
+ΔG◦(AT/TA) + ΔG◦(TG/AC) + ΔG◦(GG/CC) + ΔG◦(GC/CG)

= 1.96 + 0.0− 2.24− 1.45− 1.00− 0.88− 1.44− 1.84− 2.24
= −9.13 kcal/mol.

♦
The enthalpy of a double-stranded molecule given by x = a1 . . . an, with
reverse complementary strand an . . . a1, is computed as

ΔH◦(x) = Δhi +
n−1∑

i=1

ΔH◦(aiai+1/aiai+1) , (3.3)
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where Δhi denotes the helix initiation enthalpy. The entropy of a short stretch
of double-stranded DNA, also called duplex, can either be computed from
Table 3.1 or by using Eq. (3.1).

Example 3.2. The double-stranded DNA molecule in the above example has
the enthalpy ΔH◦ = −59.2 kcal/mol and the entropy ΔS◦ = −161.5 cal/K
per mol. Alternatively, the entropy at T = 37◦C can be calculated as

ΔS◦ =
(ΔH◦ −ΔG◦) · 1000

T
=

(−59.2 + 9.13) · 1000
310.15

= 161.4 cal/K per mol.

♦

Melting Temperature

The melting temperature is the temperature at which half of the strands in
a solution are complementary base-paired and half are not. Melting is the
opposite process of hybridization, which is the separation of double strands
into single strands. When the reaction temperature increases, an increasing
percentage of double strands melt. For oligonucleotides in solution, the melt-
ing temperature is given by

Tm =
ΔH◦

ΔS◦ + R ln([CT ]/z)
, (3.4)

where R is the gas constant, [CT ] is the total molar strand concentration,
and z equals 4 for nonself-complementary strands and equals 1 for self-
complementary strands. Melting curves can be measured by UV absorbance
at 260 nm. With the temperature, the amount of dsDNA decreases (which is
paralleled by increase of the amount of ssDNA) and leads to enhancement of
the absorbance at 260 nm.

Example 3.3. In view of the above non-self-complementary duplex with
strand concentration of 0.2 mM for each strand, the melting temperature is

Tm =
−59.2 · 1000

−161.5 + 1.987 · ln(0.0004/4)
− 273.15◦C = 56.1◦C .

♦

3.2.2 Chemical Kinetics

The kinetics of physicochemical processes is concerned with the reaction rates
of the reactants. This section addresses specific reactions involving DNA
molecules.
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Chemical Reactions

A chemical reaction is a process that results in an interconversion of chemical
substances. The substances initially involved in a chemical reaction are
termed reactants. Chemical reactions are usually characterized by a chemical
change, and they provide one or more products which are generally different
from the reactants.

Consider a spatially homogeneous mixture of m reactants Xi, 1 ≤ i ≤ n,
which react to provide a mixture of n products Yj , 1 ≤ j ≤ l. This chemical
reaction can be formally described by the chemical equation

α1X1 + . . . + αnXn
k−→ β1Y1 + . . . + βlYl , (3.5)

where αi and βj are the stoichiometric coefficients with respect to Xi and
Yj . This reaction states that α1 molecules of substance X1 react with α2

molecules of substance X2 and so on, to give βj molecules of substance
Yj , 1 ≤ j ≤ l. The reaction (3.5) can be described by the reaction-rate
equation

r = k[X1]α1 · · · [Xn]αn , (3.6)

where r is the reaction rate (in M/s), k is the rate constant, and [Xi] is the
concentration (in mol/l) of the reactant Xi. The rate constant k = k(T ) is
mainly affected by the reaction temperature T as described by the Arrhenius
equation

k = κe−Ea/RT , (3.7)

where κ is the frequency collision factor, Ea is the activation energy (in
kcal/mol) necessary to overcome so that the chemical reaction can take place,
and R is the gas constant.

The order of a chemical reaction is the power to which its concentration
term is raised in the reaction-rate equation. Hence, the order of the reac-
tion (3.5) is given by the term α =

∑
i αi. Generally, reaction orders are

determined by experiments. For instance, if the concentration of reactant Xi

is doubled and the rate increases by 2αi , then the order of this reactant is
αi. In view of (3.6), the unit of the reaction constant is (M/s)/Mα, where α
is the reaction order.

Deterministic Chemical Kinetics

The traditional way of treating chemical reactions in a mathematical manner
is to translate them into ordinary differential equations. Suppose that there
are sufficient molecules so that the number of molecules can be approxi-
mated as a continuously varying quantity that varies deterministically over
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time. Then a chemical reaction can be described by a coupled system of
differential equations for the concentrations of each substance in terms of the
concentrations of all others:

d[Xi]
dt

= fi([X1], . . . , [Xn]), 1 ≤ i ≤ n . (3.8)

Subject to prescribed initial conditions, these differential reaction-rate equa-
tions can only be solved analytically for rather simple chemical systems.
Alternatively, these systems can be tackled numerically by using a finite dif-
ference method.
Example 3.4. The Lokta-Volterra system describes a set of coupled autocat-
alytic reactions:

X + Y1
c1→ 2Y1,

Y1 + Y2
c2→ 2Y2,

Y2
c3→ Z .

Here the bar over the reactant X signifies that its molecular population
level is assumed to remain constant. These reactions also mathematically
model a simple predator-prey ecosystem. The first reaction describes how
prey species Y1 reproduces by feeding on foodstuff X ; the second reaction
explains how predator species Y2 reproduces by feeding on prey species Y1;
and the last reaction details the eventual demise of predator species Y2

through natural causes. The corresponding reaction-rate equations are as
follows:

d[Y1]
dt

= c1[X][Y1]− c2[Y1][Y2],

d[Y2]
dt

= c2[Y1][Y2]− c3[Y2] .

♦
Example 3.5. Consider the first-order reaction (e.g., irreversible isomerization
or radioactive decay),

X
k−→ Y .

The corresponding differential reaction-rate equation is given by

d[X ]
dt

= −k[X ] .

In view of the initial condition [X ] = X0 at t = 0, the solution is

[X ](t) = X0e
−kt .

♦
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3.2.3 DNA Annealing Kinetics

DNA annealing kinetics describes the reversible chemical reaction of the
annealing of complementary single-stranded DNA into double-stranded DNA.

DNA pairing from single-stranded oligonucleotides is described by the
chemical equation

ssDNA1 + ssDNA2

kf−⇀↽−
kr

dsDNA . (3.9)

This reaction can proceed in both directions and thus is reversible. The for-
ward (kf ) and reverse (kr) rate constants describe the forward hybridiza-
tion reaction and the reverse denaturation reaction, respectively. When the
reaction (3.9) reaches the equilibrium, both forward and reverse reaction
rates are equal. Then the concentrations are constant and do not change
with time.

The forward rate constant kf depends on DNA length, sequence context,
and salt concentration:

kf =
k′

N

√
Ls

N
, (3.10)

where Ls is the length of the shortest strand participating in the duplex for-
mation; N is the total number of base pairs present; and k′

N is the nucle-
ation rate constant, estimated to be (4.35 log10[Na

+] + 3.5) × 105 where
0.2 ≤ [Na+] ≤ 4.0 mol/l. The reverse rate constant kr is very sensitive to
DNA length and sequence:

kr = kfeΔG◦/RT , (3.11)

where R is the gas constant and T is the incubation temperature. Hybridiza-
tion in vitro is usually carried out at temperature T = Tm− 298.15 K, where
Tm denotes the melting temperature.

3.2.4 Strand Displacement Kinetics

DNA kinetics has the specific feature that displacement of DNA strands can
take place. This is described by the chemical equation

Am/B + Bm

kf−⇀↽−
kr

Am/Bm + B , (3.12)

where Am/B stands for a partially double-stranded DNA molecule;
Bm stands for an oligonucleotide; Am/Bm is the resulting completely
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complementary (perfectly paired) double-stranded DNA molecule; and B
is the released single DNA strand (Fig. 7.26). This second-order reaction can
be described by the differential reaction-rate equation

d[Am/Bm]
dt

=
d[B]
dt

= kf [Am/B][Bm]− kr[Am/Bm][B] . (3.13)

The concentration of Am/B at time t depends on its initial concentration
[Am/B]0 and the concentration of Am/Bm at time t,

[Am/B] = [Am/B]0 − [Am/Bm] . (3.14)

Similarly,

[Bm] = [Bm]0 − [Am/Bm] . (3.15)

Under appropriate hybridization conditions, the dissociation rate constant kr

of the reverse reaction is neglible. In this way, we obtain

d[Am/Bm]
dt

= kf ([Am/B]0 − [Am/Bm])([Bm]0 − [Am/Bm]) . (3.16)

Equivalently, we have
∫

d[Am/Bm]
([Am/B]0 − [Am/Bm])([Bm]0 − [Am/Bm])

= kf

∫
dt . (3.17)

Integration yields the concentration of the product Am/Bm at time t,

[Am/Bm] =
[Am/B]0[Bm]0(1− e([Bm]0−[Am/B]0)kf t)
[Am/B]0 − [Bm]0e([Bm]0−[Am/B]0)kf t

. (3.18)

This equation shows that at large time instant t, that is, after the reaction
is complete, the concentration of the product Am/Bm tends towards the
concentration of the reactant, either Am/B or Bm, depending on which of
the initial concentrations is lower.

3.2.5 Stochastic Chemical Kinetics

Deterministic chemical kinetics assumes that a chemical reaction system
evolves continuously and deterministically over time. But this process is nei-
ther continuous, as the molecular population level can change only by a dis-
crete integer amount, nor deterministic, as it is impossible to predict the
exact molecular population levels at future time instants without taking into
account positions and velocities of the molecules.
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Master Equations

In view of the shortcomings of deterministic chemical kinetics, the time
evolution of a chemical system can be alternatively analyzed by a kind of
random-walk process. This process can be described by a single differential-
difference equation known as a master equation.

Suppose that there is a container of volume V containing a spatially uni-
form mixture of n chemical substances which can interact through m spe-
cific chemical reactions. This chemical system can be represented by the
probability density function P (X1, . . . , Xn; t), which denotes the probabil-
ity that there will be Xi molecules of the ith substance in volume V at time
t, 1 ≤ i ≤ n. The knowledge of this function would provide a complete
stochastic characterization of the system at time t. In particular, the kth
moment of the probability density function P with respect to Xi, 1 ≤ i ≤ n,
is given by

X
(k)
i (t) =

∞∑

X1=0

. . .
∞∑

Xn=0

Xk
i P (X1, . . . , Xn; t), k ≥ 0 . (3.19)

The first and second moments are of special interest. While the mean X
(1)
i (t)

provides the average number of molecules of the ith substance in volume V
at time t, the root-mean-square deviation that occurs about this average is
given by

Δi(t) =
√

X
(2)
i (t)− [X(1)

i (t)]2 . (3.20)

In other words, we may expect to find between X
(1)
i (t)−Δi(t) and X

(1)
i (t)+

Δi(t) molecules of the ith substance in volume V at time t.
The master equation describes the time evolution of the probability density

function P (X1, . . . , Xn; t). For this, let aμdt denote the probability that an
Rμ reaction will occur in volume V during the next time interval of length
dt given that the system is in state (X1, . . . , Xn) at time t, 1 ≤ μ ≤ m.
Moreover, let bμdt denote the probability that the system undergoes an Rμ

reaction in volume V during the next time interval of length dt, 1 ≤ μ ≤ m.
Then the time evolution of the chemical system can be described by the
master equation

P (X1, . . . , Xn; t + dt) = P (X1, . . . , Xn; t)[1−
m∑

μ=1

aμdt] +
m∑

μ=1

bμdt.

(3.21)

The first term is the probability that the system will be in the state
(X1, . . . , Xn) at time t and will remain in this state during the next time
interval of length dt. The second term provides the probability that the
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system undergoes at least one Rμ reaction during the next time interval
of length dt, 1 ≤ μ ≤ m. The master equation can be equivalently
written as

δ

δt
P (X1, . . . , Xn; t) =

m∑

μ=1

[bμ − aμP (X1, . . . , Xn; t)] . (3.22)

The probability density aμdt can be expressed by another probability den-
sity. For this, let hμ be the random variable which specifies the number of
distinct molecular reactant combinations for the reaction Rμ present in vol-
ume V at time t, 1 ≤ μ ≤ m (Table 3.2). Moreover, let cμ be the so-called
stochastic reaction constant depending only on the physical properties of the
molecules and the temperature of the system, so that cμdt is the average
probability that a particular combination of Rμ reactant molecules will react
in the next time interval of length dt, 1 ≤ μ ≤ m. Thus,

aμdt = hμcμdt, 1 ≤ μ ≤ m . (3.23)

The stochastic reaction constants depend on the type of chemical reaction. To
this end, notice that a chemical reactant X has x = NA[X ]V molecules in a
volume of V litres, where NA is the Avogadro number. For instance, the first-
order reaction X

k→ Y amounts to the reaction-rate equation r = k[X ] M/s.
The reaction decreases X at a rate of NAk[X ]V = kx molecules per second
and delivers cx molecules per second. Thus, c = k. The second-order reaction
X + Y

k→ Z gives rise to the reaction-rate equation r = k[X ][Y ] M/s. The
reaction proceeds at a rate of NAk[X ][Y ]V = kxy/(NAV ) molecules per
second and provides cxy molecules per second. Thus, c = k/(NAV ).

Example 3.6. Reconsider the Lokta-Volterra system in Example 3.4. The cor-
responding master equation is given by

δ

δt
P = c1[(Y1 − 1)P (X, Y1 − 1, Y2, Z; t)− Y1P ]

+c2[(Y1 + 1)(Y2 − 1)P (X, Y1 + 1, Y2 − 1, Z; t)− Y1Y2P ]
+c3[(Y2 + 1)P (X, Y1, Y2 + 1, Z − 1; t)− Y2P ] ,

Table 3.2 Reaction Rμ and corresponding random variable hμ.

Reaction Rμ Random Variable hμ

∅ → products hμ = 1
A1 → products hμ = X1
A1 + A2 → products hμ = X1X2
2A1 → products hμ = X1(X1 − 1)/2
A1 + A2 + A3 → products hμ = X1X2X3
A1 + 2A2 → products hμ = X1X2(X2 − 1)/2
3A1 → products hμ = X1(X1 − 1)(X1 − 2)/6
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where P = P (X, Y1, Y2, Z; t) is assumed to be independent of reactant X . ♦
Example 3.7. Consider the first-order reaction

X
c−→ Y .

The corresponding master equation has the form

δ

δt
P (X ; t) = c[(1− δX0,X)(X + 1)P (X + 1; t)−XP (X ; t)] .

In view of the initial condition P (X ; 0) = δX,X0 , the master equation can be
solved analytically yielding the standard binomial probability function

P (X ; t) =
(

X0

X

)
e−cXt[1− e−ct](X0−X), 0 ≤ X ≤ X0 .

The mean of the probability function is given by

X(1)(t) = X0e
−ct

and the root-mean-square deviation turns out to be

Δ(t) =
√

X0e−ct(1 − e−ct) .

♦
The master equation is mathematically tractable only for simple chem-
ical systems. Fortunately, there is a way to evaluate the time behavior
of a chemical system without having to deal with the master equation
directly.

Gillespie’s Direct Reaction Method

Suppose the chemical system is in state (X1, . . . , Xn) at time t. In order to
drive the system forward, two questions must be answered: When will the
next reaction occur? What kind of reaction will occur?

To this end, consider the so-called reaction probability density function
P (τ, μ) so that P (τ, μ)dτ is the probability that given the state (X1, . . . , Xn)
at time t, the next reaction will occur in the interval (t + τ, t + τ + dτ),
and will be an Rμ reaction. Observe that P (τ, μ) is a joint probability
density function of continuous variable τ , τ ≥ 0, and discrete variable
μ, 1 ≤ μ ≤ m.

Theorem 3.8. If a0 =
∑

ν aν , then

P (τ, μ) = aμ exp{−a0τ}, 0 ≤ τ <∞, 1 ≤ μ ≤ m . (3.24)
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Proof. Let P0(τ) be the probability that given the state (X1, . . . , Xn) at time
t, no reaction will occur during the next interval of length τ . Then we have

P (τ, μ)dτ = P0(τ) · aμdτ . (3.25)

But 1 −∑
ν aνdτ ′ is the probability that in state (X1, . . . , Xn), no reaction

will occur during the next time interval of length dτ ′. Thus

P0(τ ′ + dτ ′) = P0(τ ′) · [1−
∑

ν

aνdτ ′] (3.26)

and hence

P0(τ) = exp{−
∑

ν

aντ} . (3.27)

Substituting this expression for P0(τ) into Eq. (3.25) yields the result. �
The direct reaction method is based on the decomposition of the reaction

probability density function P (μ, τ). This technique is termed conditioning
and leads to the equation

P (τ, μ) = P1(τ)P2(μ | τ) . (3.28)

Here P1(τ)dτ is the probability that the next reaction will occur in the inter-
val (t + τ, t + τ + dτ), and P2(μ | τ) is the probability that the next reaction
will be an Rμ reaction, given that the next reaction will occur at time t + τ .

The probability P1(τ)dτ is the sum of the probabilities P (τ, μ)dτ over all
μ-values. Thus, in view of Eq. (3.24),

P1(τ) = a0 exp{−a0τ}, 0 ≤ τ <∞ . (3.29)

Substituting this into Eq. (3.28) yields the discrete probability function

P2(μ | τ) =
aμ

a0
, 1 ≤ μ ≤ m . (3.30)

As P2(μ | τ) is independent of τ , we put P2(μ) = P2(μ | τ).
The direct reaction algorithm belongs to the class of Monte Carlo meth-

ods and simulates the stochastic process described by the probability density
function P (τ, μ). For this, the stochastic process proceeds in discrete time
steps choosing in the actual time instant t a pair (τ, μ) according to den-
sity P (τ, μ) so that the reaction Rμ occurs at time instant t + τ , and t + τ
becomes the actual time instant. But in view of Eq. (3.28) and the remark
in the last paragraph, P (τ, μ) can be viewed as a joint probability density
function

P (μ, τ) = P1(τ)P2(μ) . (3.31)
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Fig. 3.8 Inversion method.

Thus, a pair (τ, μ) can be drawn so that τ is chosen according to probability
density P1(τ) and μ is taken according to probability function P2(μ). To this
end, the inversion method (Fig. 3.8) is employed:

In order to generate a random value x according to a given proba-
bility density function P (x), draw a random number r from the uni-
form distribution in the unit interval [0, 1] so that F (x) = r, where
F (x) =

∫ x

−∞ P (u)du is the corresponding probability distribution func-
tion.

First, the distribution function of the density P1(τ) is given by

F1(τ) =
∫ τ

−∞
P1(τ ′)dτ ′ = 1− exp{−a0τ} . (3.32)

Take a random number r1 from the uniformly distributed unit interval and
put F1(τ) = r1. Resolving for τ (and replacing the random variable 1− r1 by
the statistically equivalent random variable r1) yields

τ = (1/a0) log(1/r1) . (3.33)

Second, the (discrete) distribution function of the probability function P2(μ)
is given as follows:

F2(μ) =
μ∑

ν=−∞
P2(ν) =

μ∑

ν=1

aν/a0 . (3.34)
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Draw a random number r2 from the uniformly distributed unit interval and
take for μ that value which satisfies

F2(μ− 1) < r2 ≤ F2(μ) . (3.35)

That means, take μ to be that integer for which

μ−1∑

ν=1

aν < r2a0 ≤
μ∑

ν=1

aν . (3.36)

These observations lead to Gillespie’s direct reaction algorithm 3.1 (1977).

Example 3.9. Consider the DNA hybridization reaction

ssDNA1 + ssDNA2
k−→ dsDNA .

Algorithm 3.1 Gillespie’s Direct Reaction Method

Input: Stochastic reaction constants c1 . . . , cm, initial molecular population numbers
X1, . . . , Xn

1: t← 0
2: for i← 1 to N do
3: Calculate the propensities aν = hνcν , 1 ≤ ν ≤ m.
4: Generate random numbers r1 and r2 from the uniformly distributed unit

interval.
5: Calculate τ and μ according to (3.33) and (3.36), respectively.
6: t← t + τ
7: Adjust the molecular population levels to reflect the Rμ reaction.
8: end for

Take 100,000 oligonucleotides of length 23 nt in a volume V of 10−15 l. This
gives an approximate concentration of 1.66×10−4 mol/l. The melting temper-
ature Tm was set to 338.15 K and the [Na+] value was taken to be 4.0 mol/l.
The simulation of the reaction by Gillespie’s direct reaction method shows
that the formation of double-stranded DNA is favored (Fig. 3.9). ♦

Gillespie’s First Reaction Method

Gillespie’s algorithm is direct in the sense that it calculates the quantities
τ and μ directly. D. Gillespie developed another simulation algorithm which
generates a putative time τμ for each reaction Rμ to occur and lets μ be the
reaction whose putative time comes first and lets τ be the putative time τμ.
To this end, the putative times τμ are drawn according to Eq. (3.33),

τμ = (1/a0) log(1/rμ) , (3.37)
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Fig. 3.9 Results of stochastic simulation of DNA hybridization reaction (time (h)
vs. number of molecules).

where rμ is a random number from the uniformly distributed unit interval,
1 ≤ μ ≤ m. These observations lead to Gillespie’s first reaction algorithm 3.2
(1976). Both algorithms are equivalent in the sense that the probability distri-
butions used to choose the pair (μ, τ) are the same. A more efficient version
of Gillespie’s first reaction algorithm is the Gibson-Bruck algorithm (2000).

Algorithm 3.2 Gillespie’s First Reaction Method

Input: Stochastic reaction constants c1 . . . , cm, initial molecular population numbers
X1, . . . , Xn

1: t← 0
2: for i← 1 to N do
3: Calculate the propensities aν = hνcν , 1 ≤ ν ≤ m.
4: for ν ← 1 to m do
5: Generate putative time τν according to (3.37).
6: end for
7: Let Rμ be the reaction whose putative time τμ is smallest.
8: t← t + τμ

9: Adjust the molecular population levels to reflect the Rμ reaction.
10: end for

3.3 Genes

The gene is considered to be the basic unit of inheritance. The genetic
material carries the information that directs all physiological activities
of the cell and specifies the developmental changes of the multicellular
organisms. Understanding the gene structure and function is therefore of
fundamental importance.
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3.3.1 Structure and Biosynthesis

The stored information in the DNA sequence is expressed in a two-stage
process, comprising transcription into RNA and translation of the nucleotide
sequence into an amino acid sequence. The RNA is another type of nucleic
acid that differs from the DNA in its sugar (ribose instead of deoxyribose),
and the thymine (T) base is replaced by uracil (U). RNA is usually single-
stranded and can have different functions in the cell, for example, transfer
RNA (tRNA, transfers amino acid to the polypeptide chain) or ribosomal
RNA (rRNA, one of the components of the ribosomes). The RNA that trans-
fers the information from the DNA to the ribosomes, which represent the pro-
tein synthesis machinery of the cell, is called messenger RNA (mRNA). One
of the DNA strands, the template strand, directs the synthesis of the mRNA
via complementary base-pairing by the addition of nucleotides to the 3’ end to
the growing mRNA (5’ to 3’ direction of synthesis). The process is controlled
by some functional sequence regions that serve as a set of rules to govern
the transcription (Fig. 3.10). The transcription is initiated from a promoter
located upstream from the DNA coding sequence. Promoter sequences are
highly conserved and are recognized by transcription factors, which recruit
further the RNA polymerase, the enzyme that is responsible for transcribing
the coding part of the DNA into mRNA. Different proteins that partici-
pate in the transcription process bind to a specific sequence in the double-
stranded DNA and usually make contacts with the bases in the major groove
of the DNA helix. During elongation, the RNA polymerase moves along the
DNA and elongates the RNA, whereas sequential unwinding of the DNA
helix precedes the transcription into RNA. Behind the RNA polymerase,
the unwound regions base-pair again and restore the original DNA double
helix. The process is terminated by a terminator sequence located down-
stream from the coding sequence. Transcription is a fast process: 20 to 50

5’

3’

3’

5’

5’

3’

3’

5’

5’

3’

3’

5’

5’

3’

3’

5’

RNA polymerase

unwinding

elongation

nascent mRNA

release of
RNA polymerase

and RNA

RNA

RNA
polymerase

Fig. 3.10 Transcription of DNA into mRNA by RNA polymerase.
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nucleotides per second are added to the growing nascent mRNA chain in
vivo at 37oC.

In many cases, the function of the single stranded RNA requires a well-
defined three-dimensional structure, which also involves base-pairing. In the
double-stranded DNA molecules, each base is fixed to its corresponding part-
ner to form a complementary base pair. For the single-stranded RNA (valid
also for the single-stranded DNA), each base can bind only one partner at
a time, but there are multiple potential partners for such pairing within
one chain (Fig. 3.11). With different pairing partners along the chain, vari-
ous intramolecular, partially double-stranded structures can be formed; each
of them is stabilized by the effective free energy of the double-stranded
complementary region and the type and the length of the loop enclosed in
this structure. The complementary structures formed are imperfect and the
integrity can be interrupted by several non-complementary regions, forming
three types of loops:

• Hairpin loops: A single chain flips back through a non-complementary
region and forms a double strand with adjacent sequences.

• Internal loops: Short regions within a long double-stranded region are not
complementary.

• Bulge loops: One of the strands contains bases which are not complemen-
tary to the opposite sequence.

The formation of complementary stretches releases free energy (negative
value of the Gibbs free energy), which accounts for stabilization, whereas
the loops introduce a positive value of free energy (i.e., require energy to
be formed). Additional energy is released through the hydrophobic interac-
tions between the base pairs, which are stacked over each other within the
double-stranded region. The overall stability of the secondary structure of
the single-stranded polynucleotide molecule is determined by the sum of the
stabilization through base-pairing and destabilization by the loop structures.
The free energy has to reach a sufficient negative value overall, or the sec-
ondary structure will be not formed. Intramolecular base-pairing is implicated
in the termination of the transcription: a hairpin of palindromic sequences
at the 3’ terminus causes RNA polymerase to pause and terminate the tran-
scription.

hairpin
loop

bulge
loop

internal
loop

Fig. 3.11 Various intermolecular loops formed by intramolecular base-pairing within
a single-stranded RNA molecule. Symbols: open circle = A, black circle = U, gray circle
= C, and shaded circle = G.
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A gene is determined by a segment of the DNA comprising the informa-
tion necessary to be transcribed into functional RNA and further translated
into an amino acid sequence with the flanking regulatory and controlling
elements that ensure the fidelity of these processes. The information in the
mRNA is read from the 5’ to 3’ direction in groups of three nucleotides
and each trinucleotide or triplet is called a codon. The starting point of the
translation determines the sequence of the non-overlapping codons, which
provides the reading frame. A mutation that changes the triplet frame by
insertion or deletion of base pairs will cause a change in the reading frame,
known as frameshift. The new reading frame will generate a completely new
RNA sequence beyond the site of mutation. Adverse environmental condi-
tions or errors during replication are sources of mutations. Mutations are
rare stochastic events and any base pair can be mutated. A change of only a
single base pair is called point mutation. The average spontaneous mutation
rate corresponds to changes at individual nucleotides of 10−9 to 10−10 per
generation. Substitution mutations without any apparent effect on the amino
acid level are designated as silent mutations.

In prokaryotes and in some nematodes the same regulatory sequences can
govern the transcription of more than one structural gene (i.e., translation
into more than one protein). This functional unit of the DNA sequence that
comprises many structural genes controlled from a common promoter and
transcribed into one mRNA is called operon. The activity of the structural
genes within an operon is regulated by an operator, a sequence located down-
stream from the promoter and upstream from the initial AUG codon that
determines the start of the mRNA. The operator interacts with the repressor
and activator proteins which regulate the transcription of the structural genes
and can be encoded within the operon or elsewhere in the genome.

While the prokaryotic genes are colinear with the proteins (i.e., the
DNA sequence corresponds exactly to the amino acid sequence), the cod-
ing sequence of eukaryotic genes is interrupted by additional non-coding
sequences. The coding segments are called exons and the non-coding introns.
The introns are excised from the mRNA and the exons are joined through a
process known as gene splicing that occurs in the nucleus of the eukaryotic
cell. Some mRNAs undergo a self-splicing, but the splicing of the majority
of the mRNA is catalyzed by the spliceosome, a large RNA-protein complex
composed of small nuclear ribonucleo-proteins. Specific recognition signals
are located within the intron (e.g., an invariant GU at the intron’s 5’ bound-
ary and invariant AG at its 3’ boundary define the splice junction). Within the
introns, around 20 to 50 residues upstream from the 3’ splice site is found a
conserved sequence in all the vertebrate mRNAs: CURAY, where R represents
purines (A or G) and Y represents pyrimidines (C or U). This sequence rep-
resents the branch point. The splicing is initiated by release of the 5’ intron
end and joining it to the branch point thereby forming a loop structure, a
lariat intermediate. On the second stage, the 3’ hydroxyl group of the exon
performs a nucleophilic attack at the 3’ splice site and ligation of the exons.
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The splicing process is not uniform and the exons may be arranged in
an alternative pattern, which is known as alternative splicing. This process
occurs in the higher eukaryotes and is an important mechanism in tissue
differentation and developmental regulation of gene expression. Selection of
different splicing sites is regulated by serine/arginine residue proteins or SR
proteins. Differential use of promoters or termination sites can produce alter-
native N-termini or C-termini, respectively, in proteins (Fig. 3.12). Alterna-
tive reshuffling of the exons or retaining of some of the introns leads to vari-
ations in the codons or to a new amino acid sequence. Alternative splicing is
an efficient way to economically store larger amounts of genetic information
on shorter DNA sequences.

3.3.2 DNA Recombination

DNA recombination refers to a process by which a DNA segment from one
DNA molecule is exchanged with a DNA segment from another. A common
type of recombination is homologous recombination, known also as DNA
crossover (Fig. 3.13). When two homologous parts of the DNA align side by
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Fig. 3.12 Splicing of mRNA. Introns (Ii) are shaded and exons (Ei) are presented
as open structures.
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side, they can exchange identical parts. In the regions with largely repetitive
segments, the alignment might be only partial, which will lead to an unequal
crossover. This type of recombination involves the exchange between two
homologous DNA molecules, without altering the overall genetic information.
The exchange of the strands between homologous DNAs that form heterodu-
plexes is promoted and guided by specific cellular enzymes. In contrast to
the general homologous recombination which necessitates extensive stretches
of sequence homology, a site-specific recombination can occur between two
sequences with only a small core of homology. The proteins that mediate this
process recognize specific target sequences within the DNA, unlike the com-
plementary base-pairing by the homologous recombination. The site-specific
recombination creates diversity, thus increasing the array of the proteins that
can be synthesized from a certain pool of DNA information. In addition to
increasing the genetic diversity, recombination in general plays an essential
role for repairing damaged DNA.

3.3.3 Genomes

The complete information carried by the DNA (coding and non-coding
sequences) in one organism is referred to as genome. In the eukaryotic systems
the term genome is specifically applied to the DNA encoded in the nucleus,
but the term can also be used for some organelles that contain their own DNA,
such as mitochondrial or chloroplast genomes. The total amount of the DNA
in one genome is a characteristic feature of each organism and is known as
C-value, which is defined as the length of the genome. The genomes vary
from 103 base pairs for some DNA viruses to 1011 base pairs for some plants
and amphibians. The size of the human genome, for example, is 3× 109 bp.
Large variations in the C-value between similar species are observed: For the
amphibious species, the smallest genome is 103 bp while the largest is 1011 bp.
The genome size increases with the rise in complexity of the organisms from
prokaryotes to eukaryotes, although in the higher eukaryotes, the propor-
tional correlation between genome size and organism complexity disappears.
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The prokaryotic Escherichia coli genome consists of 4.7 million base pairs and
codes for about 3,000 genes, whereas the 2.9 billion base-pairs haploid human
genome is estimated to code for approximately 40,000 genes. The genomes
of some lungfishes, however, are larger than those of mammals. Variations
in the genome size and in the C-value do not bear the complexity of the
organism which gave rise to the C-value paradox. The puzzle of the dispro-
portional C-value to the organism’s complexity has been partially solved after
identification of non-coding DNA and repetitive DNA sequences.

3.4 Gene Expression

Proteins are the main active players in the biochemical and physiological
processes of the cell and implement the unique information that is stored
in the ribonucleotid sequences. This task is executed with high fidelity and
many steps of control assure the high accuracy of the process.

3.4.1 Protein Biosynthesis

The information in the mRNA is processed in a sequential manner in the 5’ to
3’ direction, where subsequent codons are translated into amino acids. Each
set of three nucleotides corresponds to a specific amino acid, and this genetic
code is nearly universal for all living organisms. The four nucleotides (A, U,
C, and G) at each of the three positions of a codon form 64 possible codons
that encode for only 20 standard amino acids and three non-transcribed non-
sense or stop-codons (UAG, UAA, UGA). Hence, the genetic code is redundant
and highly degenerate, and multiple codons encode the same amino acid. Six
codons exist for the amino acids arginine (CGU, CGC, CGA, CGG, AGA, AGG),
leucine (UUA, UUG, CUU, CUC, CUA, CUG), and serine (AGU, AGC, UCU, UCC, UCA,
UCG), and the rest of the amino acids are specified by either four, three or
two codons. Only two of the amino acids, methionine and tryptophan, are
encoded by a single codon (Table 3.3). The set of codons coding for one amino
acid differ mostly in the third position (i.e., the mutation at the third position
is phenotypically silent), and the degeneracy of the genetic code might be an
evolutionarily acquired tolerance to minimize the deleterious effect of point
mutations.

The genetic code is widespread but not universal. The genetic code of
mitochondria shows some deviations from the “standard” genetic code for
some amino acids. In certain proteins, substituted amino acids can be inte-
grated via standard stop codons: UGA can code for selenocysteine and UAG can
code for pyrolysine. The standard genetic code has been expanded to allow
incorporation of unnatural amino acids, including amino acids modified with
fluorophores for specific detection and chemical and photo-chemical reactive
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Table 3.3 The genetic code.

1-Letter 3-Letter Codon 1-Letter 3-Letter Codon
Code Code Code Code

A Ala GCA L Leu CUC

GCC CUG

GCG CUU

GCU K Lys AAA

R Arg AGA AAG

AGG M Met AUG

CGA F Phe UUC

CGC UUU

CGG P Pro CCA

CGU CCC

N Asn AAC CCG

AAU CCU

D Asp GAC S Ser AGC

GAU AGU

C Cys UGC UCA

UGU UCC

E Glu GAA UCG

GAG UCU

Q Gln CAA T Thr ACA

CAG ACC

G Gly GGA ACG

GGC ACU

GGG W Trp UGG

GGU Y Tyr UAC

H His CAC UAU

CAU V Val GUA

I IIe AUA GUC

AUC GUG

AUU GUU

L Leu UUA Stop Ochre UAA

UUG Amber UAG

CUA Opal UGA

groups for crosslinking. These amino acids are site-specifically incorporated
into the peptide chain in response to an amber (UAG) stop codon by an amber
suppressor tRNA that is aminoacylated with the desired unnatural amino
acid. Another approach of introducing unnatural amino acid relies on the
read-through of four-base codons via an aminoacyl-tRNA with an engineered
anti-codon loop to accommodate four bases.

Translation of the mRNA is carried out by the ribosomes and each codon
binds in a complementary manner to the unpaired bases, known as anti-codon
of the corresponding tRNA (Fig. 3.14). Transfer RNA is a small non-coding
RNA chain (60 to 95 nucleotides) with a cloverleaf secondary structure. It
is the carrier for the amino acid, which after the base pairing of the codon
and anti-codon is covalently linked to the carboxyl terminus of the growing
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Fig. 3.14 Translation of the genetic information from mRNA to polypeptide chain.

polypeptide chain. The proper tRNA is selected based on the complemen-
tary codon-anticodon interactions. Although many organisms contain differ-
ent isoaccepting tRNAs (different tRNAs specific for the same amino acid),
in some cases the same tRNA can bind to two or three codons, encoding
the same amino acid. The codon-anticodon pairing in this case is incomplete
with a non-Watson-Crick geometry at the third position, known as a wobble
base pair. Only certain wobble base-pairs are allowed (G-U and I-U, I-A, I-C,
where I is a modified base) whose thermodynamic stability is similar to the
Watson-Crick base pair.

Ribosomes are large nucleoprotein complexes consisting of two subunits
that read the genetic code on the mRNA in the 5’ to 3’ direction and trans-
late it into amino acids. Initiation of the translation is a complex process,
which requires initiation factors that help the small and large subunits of
each ribosome to assemble on the mRNA with the first aminoacyl-tRNA
(Fig. 3.14). This process is slow and rate-limiting for the translation. The
translation starts at the AUG codon, which is recognized by the initiator
tRNA for methionine. In eukaryotic cells only initiator tRNA can bind to
the small subunit of ribosomes before it assembles with the large subunit
on the mRNA. In prokaryotic organisms the recognition of the first AUG-
codon is controlled by a specific ribosome-binding nucleotide sequence (6 bp)
upstream from the start AUG-codon. Therefore, in bacteria the translation
can be initiated at any AUG-position in the mRNA given the presence of
the upstream ribosome-binding sequence. As a consequence, the mRNA in
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prokaryotes is often polycystronic (i.e., one mRNA molecule can encode for
many proteins). Ribosomes elongate the polypeptide chain by adding one
amino acid residue at the time in a three-stage reaction cycle (Fig. 3.14). The
tRNA charged with an amino acid binds to the acceptor site (A site) of the
ribosome at the n+1-th codon. The part of the tRNA that carries the amino
acid is in the large subunit, whereas the anti-codon at the other end binds
to the mRNA codon. The n-th codon that has been read is in the donor site
(P site), which is occupied by the peptidyl-tRNA carrying the nascent amino
acid chain. A peptide bond is formed in the second stage through a nucle-
ophilic displacement of the peptidyl-tRNA by the 3’-linked amino acid of the
aminoacyl-tRNA. The reaction occurs in ATP-independent manner and the
energy is provided by the high energy bond between the polypeptide and the
peptidyl-tRNA. The new amino acid from the tRNA is transferred to the
C-terminus at the growing chain and the transpeptidation is catalyzed by the
peptidyltranferase activity of the large subunit. In the third and final stage,
the new peptidyl-tRNA in the A site is transferred, together with the bound
codon of mRNA, to the P site. The efficiency of this translocation process is
maintained by an elongation factor that binds to the ribosome together with
GTP, delivering the energy for the transfer reaction. The elongation of the
polypeptide nascent chain is the most rapid step in the protein synthesis.
When the ribosomes encounter the stop codon the synthesis is terminated,
which results in a release of the polypeptide and dissociation of the two ribo-
somal subunits from the mRNA. The termination is facilitated by release
factors and GTP-hydrolysis. In the whole biosynthetic cycle of the polypep-
tide chain, GTP acts as an energy donor, ensuring fastness and irreversibility
of the coupled initiation, elongation and termination of the translation.

3.4.2 Proteins – Molecular Structure

Proteins are linear polymers which have to acquire a correct 3D structure
to accomplish the physiological functions in the cell. The ribosomes decode
the information from the mRNA and translate it into a polypeptide chain,
built from the 20 amino acids. The linear sequence of the amino acids that
is determined from the genetic information stored in the DNA determines
the primary protein sequence. The amino acids are linked in a dehydration
reaction (release of water) by the C-terminal COOH group of the n-th amino
acid and the N-terminal NH2 group of the n + 1-th amino acid forming a
covalent peptide bond (−CO−NH−). The backbone of each protein is identical,
while the side chains of the different amino acids introduce diversity into the
physicochemical properties of each protein. The differences in the chemical
structure of the individual amino acids determines the directionality of the
protein chain; the peptide chain starts with a free amino group (N-terminus)
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of the first amino acid and ends with a free carboxyl group of the last amino
acid (C-terminus).

Short or large sequence regions are forming secondary structures stabilized
by non-covalent interactions (i.e., hydrogen bonds, hydrophobic interactions)
(Fig. 3.15). The most common structures are helices and beta-sheets. Helices
are stabilized with hydrogen bonds between the C = O group of the peptide
bond of the n-th residue with the NH group of the n + 4-th amino acid. In
addition, the tight packing of the helix allows van der Waals interactions of
the atoms across the helix. The most common α-helix is right handed and
can accommodate on average 3.6 residues per turn. Helices in the proteins
range from four to over forty residues, but a typical helix spans about 12
residues, corresponding to over three helical turns.

The second structural element is the beta pleated sheet consisting of
strands connected with a hydrogen bond network between NH groups in the
backbone of one strand and C = O groups of the adjacent strand, forming
a twisted pleated sheet. The backbone hydrogen bonding of the beta sheets
is generally considered as slightly stronger than that found in the α-helices.
The two neighboring chains can run in the same (parallel beta pleated sheet)
or in the opposite direction (anti-parallel beta pleated sheet). Helices and
beta-sheets comprise around half of the local structures in the globular pro-
teins. The remaining parts have either coil or loop conformation. Turns and
loops establish the joints between different secondary structural elements
and almost always occur at the surface of the protein. Turns are also sta-
bilized by a hydrogen bond, either: between the n-th and n + 3-th residues
(β-turn); between the n-th and n + 2-th residues (γ-turn); between the n-
th and n + 4-th residues (α-turn); between the n-th and n + 5-th residues

a) b)

Fig. 3.15 Protein structure exemplified by pro-penicillin amidase (protein data
bank, PDB, code 1E3A): a The primary amino acid amino acid sequence can form
different secondary structures; b The backbone of the 3D structure. The crystal struc-
ture of pro-penicillin amidase was solved by L. Hewitt and coworkers (2000).
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(π-turn). The Ω-loop is a term for a longer loop (named because of its sim-
ilarity to the Greek upper case letter omega) comprising 6 to 16 residues
with an end-to-end distance of less than 10 Å. The Ω-loop also adopts a
compact conformation, in which the side-chains tend to fill the internal loop
cavity.

The secondary structures are spatially ordered to one another in the 3D
space forming the tertiary structure. Non-polar residues (e.g., Leu, Ile, Val,
Phe) are sequestered in the interior of the molecule in the globular pro-
teins, thus avoiding the contact with water from the environment. In turn,
the proteins’ surfaces are enriched with charged polar residues (e.g., Arg,
Lys, His, Asp, Glu) that can establish contacts with the aqueous exterior.
In special cases, these residues can be found in the interior of the pro-
tein, where they accomplish specific functions (e.g., catalytic functions in
the enzymes). Uncharged polar residues (e.g., Ser, Asn, Gln, Tyr) can be
found both on the surface and in the interior of the molecule. When found
buried in the interior, they are almost always involved in hydrogen bonds.
Tertiary structure (i.e., the long- or short-range interactions between the side
chain of the amino acids), and the propensity to establish different secondary
structures, are assumed to be determined by the primary sequence of the
protein. Various secondary interactions between the backbone and different
side chains provide the structural basis for the native 3D pattern of a pro-
tein sequence: (1) electrostatic interactions, including dipole-dipole and ionic
interactions, (2) hydrogen bonds, (3) hydrophobic interactions, and (4) cova-
lent disulfide bonds, formed between some free sulfhydril groups in the side
chains of the cysteines in an oxidizing environment. The tertiary structural
arrangement of the proteins ensures dense packing with a minimized ratio of
the volume enclosed in van der Waals interactions (Fig. 3.15). This ratio of
about 0.75 is within the same range of crystals formed from small organic
molecules.

The 3D structure, in which a protein can accomplish its physiological
functions in the cell, is also called native fold or native conformation. It
is commonly assumed that in the cellular environment, the native confor-
mation is the most thermodynamically stable conformation, populating the
global minimum of the energy. En route to the stable native fold, some pro-
teins go through several partially folded intermediate states, which dwell in
local energy minima. In the cell, a variety of other proteins (e.g., chaperones,
disulfide isomerases, catalyzing the formation of disulfide bonds) assist the
newly synthesized proteins in attaining their native conformation. For some
proteins, the dwelling in a local energy minimum might have a physiological
role. A classical example is the hemagglutinin, in which the two chains of the
mature protein are kinetically trapped in an intermediate state. A drop in
the pH causes conformational changes in the intermediate to an energetically
more favorable state, which enables it to penetrate the host cell membrane.
Proteins are not rigid molecules and might shuttle between different struc-
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tures or conformations, which allows them to accomplish their physiological
functions (e.g., binding of substrates to the active site of enzymes).

Several polypeptide chains that have independently acquired a 3D
structure can interact in order to attain a highly ordered structure, a
quaternary structure. The individual chains are called subunits and they are
stabilized by the same type of interactions, responsible for the stability of
the 3D structure (i.e., secondary non-covalent interactions or disulfide bonds
within the protein complex). In one such complex two (dimer), three (trimer)
or more polypeptides (multimer) can be associated. Proteins consisting of
identical subunits only are referred to with a prefix “homo-” (homodimer,
homotrimer, etc.), whereas the complexes containing structurally different
subunits are assigned the prefix “hetero-” (heterodimer, heterotrimer, etc.).

3.4.3 Enzymes

Enzymes are proteins that accomplish specific catalytic functions in the cell.
They enormously accelerate chemical reactions in the cell (106–1012 increase
of the rate over the corresponding uncatalyzed reaction). Enzymes are specific
and act as catalysts only in one or a few similar reactions and are involved in
all biochemical reactions in the cell (e.g., DNA replication, RNA transcrip-
tion, catabolic (degradation) and anabolic (synthesis) reactions). A small
fraction of the amino acids of the entire enzyme molecule form the catalytic,
active center that comes into contact with the substrate, a molecule that will
be converted to one or more products. This segment, usually consisting of
three or four residues, is called the active site. Similar to the catalytic mech-
anism of the chemical catalysts, the enzymes lower the activation energy of
the reaction (Ea or ΔG‡), thus accelerating the rate of reaction; they do not
change the reaction pathway and do not alter the equilibrium (Fig. 3.16).
Unlike the chemical catalysts the enzymes rarely produce side products and
show a significant level of stereospecificity (recognize only one stereoisomer
as a substrate) and regioselectivity (specific for only one substrate or small
range of related compounds). The most specific enzymes are involved in the
amplification and storage of the genome information (e.g., DNA polymerase,
RNA polymerase, ribosomes, aminoacyl-tRNA synthase). Mammalian poly-
merases have an extreme fidelity with an error rate of about 10−7. Some
enzymes in the secondary metabolic pathways are described as promiscuous,
because they can act on a broad range of different (but structurally similar)
substrates.

The substrate binds to the enzyme through geometrically and phys-
ically complementary interactions and the binding is controlled through
non-covalent forces which are identical with the interactions stabilizing
different protein conformations. The first theory of the enzyme-substrate
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binding was developed by E. Fischer in 1894 suggesting that both molecules
fit to each other based on a geometrically similar shape (e.g., “the lock
and key” model). Although specificity is well covered by this model,
it cannot explain the catalytic mechanism. Koshland’s theory (1958),
known as induced fit, suggests that substrate and enzyme are both flexible
molecules and interactions between them can reshape their conformational
state.

Some enzymes require other factors, cofactors , to be bound to accom-
plish their activity. Cofactors can be either inorganic (metal ions) or small
organic molecules (heme, flavin, NADH, vitamins). Cofactors that remain
tightly bound to the enzyme, whose function they assist, are known as
prosthetic groups (NADH). Enzymes with a bound cofactor are called
holoenzymes (i.e., active form), and enzymes without a cofactor apoen-
zymes. Co-enzymes are chemically changed during the enzyme reaction and
regenerated at the end, thus maintaining constant steady-state levels inside
the cell.

Enzyme activity can also be affected by other molecules, called effec-
tors, which modulate the enzyme activity either by direct binding to bind-
ing sites of the enzyme or indirectly through subunits that modulate the
enzyme function. Such enzymes are called allosteric. Small molecules can
also decrease or inhibit enzyme activity (i.e., inhibitors), or enhance the
enzyme activity (i.e., activators). Enzymes, like all the proteins, are con-
formationally dynamic and this internal dynamics can be essential for the
catalytic properties. Temperature and environmental pH can influence the
conformational freedom of the enzyme molecule and change their catalytic
properties. In the cell, the enzyme activity is controlled additionally by
its amount, which depends on the rate of biosynthesis and the rate of
degradation.
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Enzyme Kinetics

The conversion of a substrate S to a product P catalyzed by an enzyme E
can be described by the chemical equation

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P . (3.38)

This process undergoes two stages. First, the substrate reversibly binds to
the enzyme and an enzyme-substrate complex ES is formed. Second, the
enzyme catalyzes the chemical step in the reaction and releases a product.
The enzyme is not altered by the reaction and thus the equilibrium is influ-
enced only by the thermodynamical properties of S and P . In equilibrium,
the conversion to the product becomes rate-limiting. Therefore, the corre-
sponding differential reaction-rate equation has the property

d[ES]
dt

= k1[E][S]− k−1[ES]− k2[ES] = 0 . (3.39)

Hence,

[ES] =
k1[E][S]
k−1 + k2

. (3.40)

In 1913, L. Michaelis and M. Menten assumed that product formation
is the rate-limiting step (k−1 ! k2). The maintenance of the ES complex
in equilibrium (steady-state assumption) is then described by the Michaelis
constant

Km =
k−1 + k2

k1
≈ k−1

k1
. (3.41)

The non-covalent ES complex is known as the Michaelis complex. Eq. (3.40)
then simplifies to

[ES] =
[E][S]
Km

. (3.42)

The total concentration of the enzyme is the sum of the concentrations of
the enzyme in the ES complex and the free soluble enzyme,

[E0] = [E] + [ES] . (3.43)

Thus, Eq. (3.42) rearranges to

[ES] =
([E0]− [ES])[S]

Km
, (3.44)

which can further be transformed to

[ES] = [E0]
1

1 + Km/[S]
. (3.45)
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The initial velocity of the reaction is given by

d[P ]
dt

= k2[ES] . (3.46)

Substituting Eq. (3.45) into Eq. (3.46) and multiplying both nominator and
denominator by [S] gives

d[P ]
dt

= k2[E0]
[S]

Km + [S]
= Vmax

[S]
Km + [S]

(3.47)

where Vmax is the maximum velocity. In this case, all enzyme molecules are
saturated by the substrate and the enzyme exists only in an ES form:

Vmax = k2[E0] . (3.48)

k2 is called catalytic constant or turnover number kcat and gives the num-
ber of conversions (turnovers) that each catalytic site catalyzes per unit of
time. Combining Eqs. (3.47) and (3.48), an equation known as the Michaelis-
Menten equation is derived,

ν =
Vmax[S]
Km + [S]

. (3.49)

At the substrate concentration [S]= Km, the reaction velocity is half-
maximal. The Michaelis constant Km is the measure of the affinity of the
enzyme to the substrate: For enzymes with small Km values, the maximal
catalytic activity is achieved at low substrate concentrations. Each enzyme
has a characteristic Km value for a given substrate; the Km value varies for
different substrates of the same enzyme and it is a function of the temperature
and pH value. The apparent second-order rate constant kcat/Km, known also
as a specificity constant, is used as a measure of the catalytic efficiency of
the enzyme. It depends on the encounters between substrate and enzyme in
a solution and summarizes both characteristics of an enzyme: affinity and
catalytic ability. The specificity constant can be used for the comparison of
enzymes with different substrates. The theoretical maximum of kcat/Km is
108–109 per Ms and is called diffusion limit (i.e., the diffusion rate limits the
reaction rate and every collision of the enzyme with a substrate will release
a product).

Michaelis-Menten kinetics assumes irreversibility of the enzymatic catal-
ysis and it is based on the law of mass action, assuming free diffusion and
random collision. In the cell, however, the processes can deviate from such
idealized conditions. The highly crowded internal space of the cell signifi-
cantly limits the free molecular movements (e.g., the concentration of macro-
molecules in the cytoplasm of prokaryotic cells is about 400 mg/ml). For some
heterogeneous processes (e.g., as in the case of DNA polymerase), the sub-
strate mobility may also be limited. These deviations from the conventional
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mass-action laws led to the development of the limited-mobility derived or
fractal-like kinetics, reviewed by R. Kopelman (1988), M. Savageau (1995),
and S. Schnell and T. Turner (2004).

Enzyme Thermodynamics

The enzymatic reaction (3.38) can be described by the equilibrium equation

−RT log Keq = ΔG◦
eq , (3.50)

where Keq is the equilibrium constant, ΔG◦
eq is the Gibbs free energy of the

ES complex, T is the absolute temperature, and R is the gas constant. But
if it is assumed that the formation of the ES complex is in rapid equilibrium
with the reactants, then the equilibrium constant can be expressed as

Keq =
[ES]

[E] [S]
. (3.51)

Combining Eqs. (3.46), (3.50), and (3.51) gives

d[P ]
dt

= k2[E][S]e−ΔG◦
eq/RT . (3.52)

This equation shows that the rate of the reaction depends not only on the
reactants, but increases exponentially with ΔG◦

eq .

3.5 Cells and Organisms

Despite the phenotypic and genotypic variation of different organisms, they
share remarkable similarities on the cellular level (e.g., in the general cell
structure, physiology and biochemistry). The cells propagate by duplicating
the DNA and each daughter cell inherits identical genetic material from
the parental cell. This genetic information is translated in a variety of pro-
teins that determine the functional diversity of each cell. The prokaryotic
cells are commonly unicellular and a single cell is capable of executing
all the physiological activities. Unlike the prokaryotes, in the eukaryotic
cell the physiological activities are spatially separated in compartments
or organelles surrounded by double-lipid-layer membranes. The various
membrane-separated organelles in the cell that accomplish different functions
are referred to as the endomembrane system. Another level of complexity
exists in multicellular eukaryotic organisms: various physiological activi-
ties are separated in different cells and have led to cell specialization and
differentiation of the cell types.
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3.5.1 Eukaryotes and Prokaryotes

The nucleus is the largest organelle in the eukaryotic cell and carries the
inheritance information encoded in the DNA. It is surrounded by a double
membrane, referred to as the nuclear envelope, with pores that allow nucleus
components to move in and out. The nuclear membrane extends in various
tube- and sheet-like membrane extensions, forming an extensive network of
membranes, called the endoplasmic reticulum. In eukaryotes, the mRNA is
synthesized (transcription) in the nucleus, whereas the translation into pro-
teins occurs in the cytosol. Ribosomes that perform the protein synthesis
are attached to the endoplasmic reticulum. Furthermore, the newly synthe-
sized proteins are modified and transported to their final destinations in the
Golgi-bodies which bud off from the endoplasmic reticulum. The endoplasmic
reticulum and Golgi apparatus function not only in the processing and trans-
port of proteins designed for secretion and membrane incorporation, but also
actively participate in the synthesis of lipids. Different vesicles can be formed
by budding off the membranes whose function is to transport nutrients into
and waste products out of the cell.

In nearly all eukaryotes the aerobic respiratory functions are accomplished
in the mitochondria, which are surrounded by a double layer of membranes.
Mitochondria are found in almost all eukaryotes and play a critical role in
energy metabolism. They produce the energy substance, ATP, by oxidative
breakdown of the nutrients. Mitochondria contain their own DNA. There is
a variety of other simple compartments surrounded by membranes that are
responsible for different functions found in the eukaryotic cell:

• Lysosomes contain proteolytic enzymes that digest the food substances.
• Peroxisomes allow specific reactions in a defined environment to take place

in which toxic peroxide is released.
• Vacuoles maintain the osmotic pressure of the higher plants.
• Chloroplasts produce energy through photosynthesis and are characteristic

of plant cells and various groups of algae.

Next to the spatial separation of biochemical processes, the eukaryotic cell
has another level of organization: a network of filamentous proteins through-
out the cytoplasm forms the cytoskeleton, which provides the cell cytoplasm
with structure and shape. The cytoskeleton determines the general organiza-
tion within the cell and enables motions of the entire cell and throughout the
cytoplasm. The cytoskeleton is composed mainly of actin filaments, interme-
diate filaments, and microtubules.

Prokaryotes are referred to as organisms whose genetic information is not
stored in the nucleus or any membrane-bound structure. They are usually
smaller and their cell structure is simpler than that of eukaryotes. The genetic
material is encoded by a single molecule of chromosomal DNA called also
nucleoid. Some prokaryotic cells might contain self-replicating satellite circu-
lar DNA, known as plasmids, which encodes some crucial functions for the
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prokaryotic cell. The prokaryotes also lack several membrane-bound cell com-
partments; nevertheless, the biochemical processes are spatially separated
within the cell, positioned at differents subcellular sites. Cytoskeleton ele-
ments, homologous to eukaryotic cytoskeletal proteins, have also been found
in prokaryotes and they function in actively positioning proteins and DNA
molecules. Prokaryotes have a shorter generation time and a large surface-to-
volume ratio that consequently gives them a higher metabolic rate compared
to eukaryotes. Based on the ability of prokaryotes to utilize oxygen or differ-
ent compounds for oxidation processes, the cells are divided into aerob (use
oxygen) and anaerob.

3.6 Viruses

Viruses are sub-microscopic particles that can infect the cells of living organ-
isms. They are not considered as eukaryotes or prokaryotes.

3.6.1 General Structure and Classification

Viruses (translated from Latin as toxin or poison), also known as virions,
infect both eukaryotic and prokaryotic cells and replicate and propagate fur-
ther using the transcription and translation systems of the host cell. The
group of viruses infecting bacteria is known as bacteriophages. The majority
of the viruses have a size of 10–250 nm and with some exceptions up to 750 nm,
which is larger than the size of some bacteria. The genetic information is
stored on nucleic acid, which can be either RNA (single- or double-stranded)
or DNA (single- or double-stranded), and is encapsulated by a protein shell,
known as capsid. The proteins of the capsid are encoded by the viral genome.
Viral particles have regular shapes including helical capsids (tobacco mosaic
virus), icosahedral symmetry (hollow quasi-spherical structure; polio virus,
and foot and mouth disease virus), enveloped viruses (in addition to the
capsid, they are covered by a lipid-bilayer membrane; influenza virus and
human immunodeficiency virus), and complex viruses (tailed bacteriophages,
poxviruses). Some viruses are unable to survive outside the host cell, whereas
others are more stable and can persist outside a cellular environment for very
long periods.

According to the classification proposed by the Nobel Prize-winner D.
Baltimore, also known as Baltimore classification, viruses can be divided
into seven groups: (I) double-stranded DNA, (II) single-stranded DNA, (III)
double-stranded RNA, (IV) positive-sense (+) single-stranded RNA, (V)
negative-sense (−) single-stranded RNA, (VI) single-stranded-RNA reverse
transcribing, and (VII) double-stranded-DNA-reverse transcribing. In the
DNA viruses (Groups I and II), the genetic information is stored on DNA
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and it is replicated via DNA-dependent DNA polymerase, while in the viruses
belonging to Groups III, IV, and V the genetic information is stored in an
RNA sequence. The ribosomes of the host directly translate the RNA strand
into the positive-sense viruses, whereas in the negative-sense viruses the RNA
is first inverted into positive-sense RNA via RNA polymerase. Examples of
RNA viruses are hepatitis A and C, SARS, yellow fever, rubella and influenza
viruses; to the DNA viruses belong simian virus (SV) 40, human herpes
virus, cowpox smallpox viruses, and bacteriophages. The most severe Mar-
burg, Ebola, and Lassa viruses belong to the group of negative-sense (−)
single-stranded RNA viruses.

In the reverse transcribing single-stranded RNA viruses (Group VI), also
called retroviruses, the genetic information is stored on RNA, and they repli-
cate by formation of DNA due to reverse transcription via RNA-dependent
DNA polymerase. The DNA is then integrated into the host genome and
further propagated by the replication and translation machinery of the host
cell. The most prominent member of this group is the human immunode-
ficiency virus (HIV). The double-stranded DNA of the reverse transcribing
double-stranded DNA viruses (Group VII) is transcribed both into mRNA
and translated further into protein and RNA, which is integrated into the host
genome after reverse transcription into DNA. To the latter Group belongs
the hepatitis B virus.

Therapeutical approaches against viral diseases include vaccination or
administration of anti-genic material to trigger immunity responses to the
disease agent. Antibiotics and other drugs are often applied too, although
their targets are mainly inflammation and other secondary responses caused
by the viral infection.

3.6.2 Applications

Viruses have a great potential in the virotherapy also called oncolytic or viral
therapy. This technique involves specific targeting and killing of cancer cells
through the introduction into the body of genetically modified viral material.
The viral particles reproduce rapidly over a short period of time and attack
only the cancerous cells without harming the healthy cells. In the viruses
tailored for the viral therapy, either the protein coat is modified so that
the affinity only against cancer cells is assured, or the genetic information
of the virus is altered and it can enter any cell but replicate only in the
cancerous cells. This therapy can be applied to treat cancer as well as to
inhibit angiogenesis. A critical barrier in the widespread application of cancer
treatment is the immune system of the host, which responds to the engineered
viruses and destroys them.

The shape and size of the viruses, the functional groups on their surface,
and the tools they have developed to cross barriers of the host cells make
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viruses very attractive to material sciences and nanotechnology. The precisely
defined pattern of functional groups and their ordering on the virus surface
offers a unique scaffold for covalently linked surface modifications. A. Belcher
and colleagues (2002) have engineered a liquid crystal system from genetically
engineered bacteriophage and zinc sulfide, which spontaneously assembles
into a thin hybrid nanocrystal ordered into approximately 72 μm domains. In
a subsequent study (2006), they have extended the application of the virus-
templated synthesis to assemble nanowires of hybrid gold-cobalt oxide. The
virus particles were genetically modified to incorporate gold-binding peptides
into the filament coat. The total negative charge of these particles allows
them to be layered between oppositely charged polymers to form thin and
flexible sheets. This two-dimensional assembly of viruses on polyelectrolyte
multilayers is a step forward in creating flexible ion batteries that supply
much electrical energy in a thin and lightweight package.

HIV

Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of the
immune deficiency syndrome (AIDS) and its related disorders. The first
case report of AIDS appeared in 1981, while the virus was first isolated in
1983. Currently, there are about 49,000 HIV-1 infections in Germany alone,
with about 2,900 new infections per year. Primarily, HIV-1 infects and kills
immune cells which regulate and amplify immune response. Without effective
anti-retroviral therapy, the hallmark decrease in immune cells during AIDS
results in a weakened immune system that impairs the ability to fight against
infections or cancer, so that death eventually results. HIV-1 is a retrovirus,
and similar to all retroviruses its RNA genome replicates by a DNA interme-
diate. Many retroviruses contain three structural genes (Gag, Pol, and Env,
encoding for core and structural proteins, reverse transcriptase, and coat pro-
teins, respectively). HIV-1 has additional accessory and regulatory genes: Vif,
Vpr, Vpu (accessory) and Nef, Tat, Rev (regulatory).

The HIV-1 life cycle is well-documented. HIV infection begins when the
viral glycoprotein (gp) interacts with the CD4 receptor on the surface of an
immune cell. After fusion of the viral membrane with the cell membrane, the
viral core with the associated RNA is internalized into the cell. Partial uncoat-
ing of the viral core exposes the viral RNA. In the cytoplasm of the recipient
cell, the viral genomic RNA is synthesized by viral reverse transcriptase into a
viral double-stranded DNA preintegration complex. After migrating into the
nucleus, facilitated by other viral proteins the viral double-stranded DNA
of the preintegration complex is integrated randomly into the host DNA by
viral integrase. RNA polymerase transcribes the proviral DNA into mRNA.
In the early transcription phase, the mRNA is spliced by the cellular splic-
ing machinery into multiply spliced transcripts, producing the Tat, Rev and
Nef proteins. When Rev accumulates to a critical level, the mRNA produc-
tion shifts from multiple spliced to single spliced and unspliced transcripts,



References 97

resulting in the Env gp160 (containing envelope proteins gp120 and gp41),
Vif, Vpr, Vpu proteins and Gag p55 (containing matrix, capsid, nucleocapsid)
and Gag-Pol p160 (containing matrix, capsid, protease, reverse transcriptase,
and integrase) proteins, respectively. The virus is assembled at the plasma
membrane, forming a budding virion. After virus budding out from the cell
surface into extracellular space, maturation of the virus proceeds (by prote-
olytical cleavage of the Gag and Gag-Pol polyprotein). Now the virus is ready
for another round of infection.

Hepatitis B Virus

Hepatitis B virus (HBV) has one of the smallest genomes (approximately
3 kb) and belongs to the group of reverse transcribing double-stranded DNA
viruses. The virus specifically infects the liver of humans and various ani-
mals and causes acute liver damage. Over 250 million people worldwide are
infected with HBV yearly, some of whom develop severe pathological con-
sequences, including chronic hepatitis, cirrhosis, and hepatocellular cancer.
HBV infection is particularly common in Asia and Africa and is associated
with approximately 10% of the worldwide liver cancer incidence (up to a
million cases of liver cancer annually). Transfection occurs through infected
blood and other body fluids.

The hepatitis B virus is composed of an outer lipid envelope and an icosa-
hedral nucleocapsid core (i.e., DNA genome and protein coat surrounding
it). The virus attacks the surface receptors of the hepatocytes and after
internalization into the cell migrates into the nucleus. It replicates through
reverse transcription of RNA intermediate, the pregenomic RNA, which can
be packed into capsids and is reversely transcribed into DNA. The new virions
bud out of the endoplasmic reticulum and are exported from the cell.

In the cases of acute HBV infection, up to 95% of adults overcome the
infection spontaneously without any treatment. Chronic HBV is treated with
anti-viral agents that either inhibit the virus replication or stimulate the
immune response. Five drugs have been approved for the treatment of chronic
HBV infection: interferon-alpha, pegylated interferon-alpha, lamivudine, ade-
fovir dipivoxil, and entecavir. Their efficacy is limited by their side effects, as
well the high frequency of viral mutations which render the therapeutics less
potent.
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Chapter 4

Word Design for DNA Computing

Abstract This chapter addresses the problem of negative word design: Con-
struct a large set of oligonucleotides which selectively hybridize so that
undesired molecules encoding false results or blocking the desired reactions
are excluded. In practice, such a set of oligonucleotides is designed so that
it simultaneously satisfies several thermodynamical and combinatorial con-
straints.

4.1 Constraints

DNA-based computations rely on short single-stranded DNA molecules
referred to as oligonucleotides. The computational process usually allows
oligonucleotide strands to hybridize in order to form longer DNA molecules.
For this, the oligonucleotide strands called codewords must selectively
hybridize in a manner that is compatible with the goals of the compu-
tation, and unwanted or non-selective hybridizations do not occur. In this
section, we provide basic constraints for the design of appropriate sets of
oligonucleotides called DNA codes or DNA languages.

4.1.1 Free Energy and Melting Temperature

Two physical constraints on DNA codes are addressed that refer to the sta-
bility of DNA strands in solution. A free energy constraint for a DNA code C
is one in which any two codewords x and y in C must have comparable Gibbs
free energy. That is, there is a constant δ > 0 so that for any two codewords
x and y in C,

|ΔG◦(x) −ΔG◦(y)| ≤ δ . (4.1)

Z. Ignatova et al., DNA Computing Models, 99
DOI: 10.1007/978-0-387-73637-2 4, c© Springer Science+Business Media, LLC 2008



100 4 Word Design for DNA Computing

A melting temperature constraint is one in which all codewords in the DNA
code are forced to have similar melting temperature. This allows hybridiza-
tion of multiple DNA strands to proceed simultaneously. Another melting
temperature constraint is that all codewords in the DNA code must have
similar GC-content and as a result similar thermodynamical characteristics.
The GC-content of a DNA strand is defined as the number of positions in
which the string has symbols C or G. The melting temperature constraint
aims to design a DNA code so that a temperature can be found which is well
above the melting temperature of all non-Watson-Crick pairs (x, yRC), x �= y,
and well below the melting temperature of all Watson-Crick complementary
pairs (x, xRC ). Then the formation of Watson-Crick pairs is significantly more
energetically favorable than all possible non-Watson-Crick pairs.

4.1.2 Distance

The Hamming distance measure is particularly useful for oligonucleotides of
length of 10 nt or less as the DNA sugar-phosphate backbone can be consid-
ered perfectly rigid.

In typical applications of DNA computing, the strings encoding informa-
tion of interest are of the same length. Let Σ be an alphabet and let n ≥ 1
be an integer. A block code of length n over Σ is a language over Σ consisting
of strings with the same length n. In particular, a DNA block code is a block
code over the DNA alphabet Δ.

Let C be a DNA block code, and let φ be a morphic or anti-morphic
involution on Δ∗. The φ-Hamming distance between two codewords x and
y in C is defined as the number dφ

H(x, y) of positions at which the strings
x and φ(y) differ. Notice that if a codeword x equals its image φ(x), then
dφ

H(x, φ(x)) = 0. The minimum φ-Hamming distance of C is the minimum
non-zero φ-Hamming distance dφ

H(C) between any two codewords in C. If φ
is the identity mapping, then the φ-Hamming distance amounts to the ordi-
nary Hamming distance denoted as dH . If φ is the reverse complementarity,
the φ-Hamming distance provides the reverse-complement Hamming distance
termed dRC

H . In this case, the identity xRC = φ(x) = y represents the fact
that the single-stranded molecules x and y could bind to each other.

Theorem 4.1. Let φ be a morphic or anti-morphic involution on Σ∗. The
involution φ is an isometry for dφ

H on Σ∗. That is, for all strings x and y of
the same length over Σ,

dφ
H(x, y) = dφ

H(φ(x), φ(y)) . (4.2)

Moreover, for all strings x and y of the same length over Σ,

dH(x, y) = dφ
H(x, φ(y)) and dH(x, φ(y)) = dH(φ(x), y) . (4.3)
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Finally, if C is φ-closed (i.e., with each codeword x the code C also contains
the string φ(x)), then dφ

H(C) = dH(C).

Proof. The first two assertions are obvious. Let C be φ-closed, and let x and
y be codewords in C. Then dH(x, y) = dφ

H(x, φ(y)) and so dH(C) ≥ dφ
H(C).

Conversely, dφ
H(x, y) = dH(x, φ(y)) and thus dφ

H(C) ≥ dH(C). �
Example 4.2. Let φ be the Watson-Crick complementarity. The DNA words
x = ATGCTA and y = AAGCTA have Hamming distance dH(x, y) = 1 and
φ-Hamming distance dφ

H(x, y) = dH(x, φ(y)) = 3, since φ(y) = TAGCTT. ♦

4.1.3 Similarity

When DNA strands are considered as perfectly rigid, the Hamming distance
is quite appropriate. However, for DNA strands of length of 10 nt or longer, it
is more reasonable to consider the strands to be perfectly elastic like rubber-
bands. For perfectly elastic strands it is possible for residues that are not
necessarily at the same position in two strands to pair with each other.

Levenshtein Distance

Let Σ be an alphabet. The Levenshtein distance, also called edit distance,
was first considered by V. Levenshtein in the mid-1960s. It is the distance
between two strings x and y over Σ given by the minimum number dL(x, y)
of operations needed to transform the string x into the string y, where the
operations are the insertion and deletion of a single symbol. Insertion or
deletion are referred to by the generic term indel.

Example 4.3. We have dL(AGGT, GAT) = 3 as the following indels illustrate:
AGGT (delete A), GGT (delete G), and GT (insert A), GAT. ♦
Levenshtein also proposed a more complex edit distance measure using indels
and the operation of substitution of single symbols. Then the edit distance
can be considered as a generalization of the Hamming distance, which is only
used for strings of the same length and only considers substitutions.

The edit distance between two strings is strongly related to their longest
common subsequence. To see this, let x = a1 . . . am and y = b1 . . . bn be
strings over Σ. A string z = c1 . . . cl is called a common subsequence of x and
y if two sequences of indices 1 ≤ i1 < . . . < il ≤ m and 1 ≤ j1 < . . . < jl ≤ n
exist so that ck = aik

= bjk
for 1 ≤ k ≤ l. Since the empty string is always a

common subsequence, the set of common subsequences of any two strings is
not empty. The deletion similarity between x and y is defined as the length
�(x, y) of the longest common subsequence of x and y.
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Theorem 4.4. The edit distance forms a metric on Σ∗, and for any two
strings x and y over Σ,

dL(x, y) = |x|+ |y| − 2�(x, y) . (4.4)

Proof. Consider a graph whose vertices are the strings in Σ∗, with an edge
joining the vertices corresponding to strings x and y, x �= y, if and only if y
can be obtained from x by an indel. Then the edit distance dL(x, y) is the
length of the shortest path from x to y, and is thus indeed a metric. The
second assertion is clear. �
Consequently, the deletion similarity is related to the maximum number
of Watson-Crick base pairs that may be formed between two anti-parallel
strands. For two reverse complementary strands this number is simply their
length.

Similarity Functions

The mathematical analysis of DNA strands can be based on similarity func-
tions that measure thermodynamic similarity on single-stranded DNA. For
this, let Σ be an alphabet. A similarity function on Σ∗ is a mapping
σ : Σ∗ ×Σ∗ → R

+
0 that satisfies the conditions

σ(x, x) ≥ σ(x, y) = σ(y, x) ≥ 0, x, y ∈ Σ∗ . (4.5)

The Hamming distance gives rise to a similarity function σα : Σn×Σn →
N0 that assigns to each pair of strings x and y in Σn the number of positions
σα(x, y) at which they coincide. This function is called Hamming similarity
and fulfills the condition

σα(x, y) = n− dH(x, y), x, y ∈ Σn . (4.6)

The Levenshtein distance also provides a similarity function.

Theorem 4.5. Let φ be a morphic or anti-morphic involution on Σ∗. A sim-
ilarity function on Σ∗ is given by

σλ(x, y) = �(x, φ(y)), x, y ∈ Σ∗ . (4.7)

Example 4.6. Let φ be the reverse complementarity. Take the φ-closed DNA
code C = {x, xRC , y, yRC} with x = AGAT and y = ATAG, and thus xRC =
ATCT and yRC = CTAT. The sequence AT is the longest common subsequence
between any pair of distinct strings in C. Thus for any non-Watson-Crick
pairing
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σλ(x, x) = σλ(xRC , xRC) = 2,

σλ(y, y) = σλ(yRC , yRC) = 2,

σλ(x, y) = σλ(xRC , yRC) = 2,

σλ(y, x) = σλ(yRC , xRC) = 2,

while for the two Watson-Crick complementary pairings

σλ(x, xRC) = σλ(xRC , x) = 4,

σλ(y, yRC) = σλ(yRC , y) = 4 .

♦
A similarity function related to the nearest-neighbor thermodynamics is

based on the longest common block subsequence. For this, let x = a1 . . . am

and y = b1 . . . bn be strings over Σ. A common subsequence z = c1 . . . cl of x
and y is called a common block subsequence if any two consecutive symbols
in z are either consecutive in both x and y or are non-consecutive in both
x and y. This means that the substring z can be defined by sequences of
indices 1 ≤ i1 < . . . < il ≤ m and 1 ≤ j1 < . . . < jl ≤ n so that ik + 1 =
ik+1 is equivalent to jk + 1 = jk+1 for 1 ≤ k ≤ l − 1. The block similarity
between x and y is defined as the length σβ(x, y) of the longest common block
subsequence of x and y. Clearly,

σβ(x, y) ≤ σλ(x, y) and σβ(x, x) = σλ(x, x) = |x| . (4.8)

Example 4.7. The strings AGACT and AGT have AGT as the longest common
subsequence, but AG as the longest common block subsequence. ♦
Theorem 4.8. Let φ be a morphic or anti-morphic involution on Σ∗. The
involution φ is an isometry for the similarities σβ and σλ on Σ∗. That is,
for all strings x and y over Σ,

σβ(x, y) = σβ(φ(x), φ(y)) and σλ(x, y) = σλ(φ(x), φ(y)) . (4.9)

A DNA block code C of length n is called a reverse-complement (RC)
closed DNA code provided that each codeword occurs with its reverse com-
plement and no codeword equals its reverse complement. That is, if x ∈ C
then xRC ∈ C and x �= xRC . Let σ be a similarity function on Δ∗. An RC-
closed DNA code C is called a (n, D) code based on the similarity σ if for all
codewords x, y in C with x �= y,

σ(x, y) ≤ n−D − 1 . (4.10)

In this case, we say that C is an RC-closed DNA code of length n, distance
D, and deletion similarity n−D − 1.
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Example 4.9. The DNA code C in Example 4.6 is RC-closed with length
n = 4, distance D = 1, and deletion similarity n−D − 1 = 2. ♦

4.2 DNA Languages

This section provides a formal language approach to constructing DNA codes
that satisfy certain hybridization constraints.

4.2.1 Bond-Free Languages

A basic attempt to address the negative word design problem is to consider
bond-free languages first studied by L. Kari and coworkers (2005).

Let Σ be an alphabet, and let k ≥ 0 be an integer. Let φ denote a morphic
or anti-morphic involution on Σ∗, and let L be a language over Σ. A substring
of L is a string u over Σ that is a substring of a string w of L (i.e., w = vuv′

for some v, v′ ∈ Σ∗). The language L is called (φ, k)-bond-free if, for any two
substrings u and v of L with length k, we have that u �= φ(v). Clearly, if L is
(φ, k)-bond-free then L is (φ, k′)-bond-free for each k′ ≥ k. Moreover, if L is
(φ, k)-bond-free then each string in L is hp(φ, k)-free (Sect. 6.3.5).

Lemma 4.10. Let S be the set of all subwords of length k in a language L
over Σ. If S ∩ φ(S) = ∅, then the language L is (φ, k)-bond-free.

Example 4.11. Let φ be the reverse complementarity. The DNA language
L = {AC, AA} is (φ, 1)-bond-free, since φ(L) = {GT, TT}. ♦

In typical DNA applications, the strings encoding information of interest
are usually obtained by concatenating fixed-length strings. For this, let K be
a block code of length k over Σ. The set K+ consists of all strings that are
obtained by concatenating one or more strings from K. Each subset of K+

is termed a k-block code. Let S be a set of strings of length k over Σ. The
k-substring closure of S is the set S⊗ of all strings w of length at least k over
Σ so that any substring of w of length k belongs to S.

Example 4.12. Consider the DNA block code K = {AA, AC, CA, CC}, and let
φ be the reverse complementarity. Take the 2-block code L = K+. Clearly,
K is the set of all subwords of length 2 in L and thus L is the 2-substring
closure of K. Moreover, K ∩ φ(K) = ∅ and hence Lemma 4.10 implies that
the language L is (φ, 2)-bond-free.

However, any extension of the language L by a string w ∈ Δ2 \K yields
a language L′ = (K ∪ {w})+, which is not (φ, 2)-bond-free. For instance, if
w = AG, then GC is a subword in L′ with the property GC = φ(GC).
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It is possible to construct a superset of L which is (φ, 2)-bond-free. For
this, add AG as a subword with the constraint that it cannot be followed by
CA or CC. Moreover, add GA as a subword with the constraint that it cannot
be preceded by AC, CC, or AG. The resulting language is (φ, 2)-bond-free and
can be accepted by a finite state machine. ♦
The situation described in the previous example will be generalized by the
following

Theorem 4.13. Let φ be the reverse complementarity, let k ≥ 1 be an inte-
ger, and let K be the set of all strings of length k over {A, C}. The k-block
code K+ is the k-substring closure of K and is (φ, k)-bond-free.

Bond-freedom can be generalized by making use of the Hamming distance.
A language L over Σ is called (φ, Hd,k)-bond-free if for any two substrings u
and v of length k in L, we have dH(u, φ(v)) > d. By definition, a language is
(φ, H0,k)-bond-free if and only if it is (φ, k)-bond-free.

Theorem 4.14. Let j and q be positive integers, and let L be a subset of
ΣjqΣ∗. If L is (φ, Ht,q)-bond-free for some integer t ≥ 0, then L is also
(φ, Hd,k)-bond-free, where d = j(t + 1)− 1 and k = jq.

Proof. Let u = u1 . . . uj and v = v1 . . . vj be substrings of length k in L, where
ui and vi are strings of length q, 1 ≤ i ≤ j. By hypothesis, dH(ui, φ(vi)) ≥ t+1
and thus dH(u, φ(v)) =

∑
i dH(ui, φ(vi)) ≥ j(t + 1). �

In particular, if t = 0 then every language that is (φ, H0,q)-bond-free is also
(φ, Hd,(d+1)q)-bond-free for any integer d ≥ 0.

Theorem 4.15. Let L be a language over Σ, let φ be a morphic or anti-
morphic involution on Σ∗, and let d and k be integers with k > d ≥ 0. If the
language L is (φ, Hd,k)-bond-free, then L is also (φ, H0,k−d)-bond-free.

Proof. Let u and v be subwords of length k − d in L. There are subwords of
length k in L so that u′ = u1uu2 and v′ = v1vv2 for appropriate subwords u1,
u2, v1, and v2. First, let φ be a morphic involution. By hypothesis, d + 1 ≤
dH(u′, φ(v′)) = dH(u1, φ(v1)) + dH(u, φ(v)) + dH(u2, φ(v2)). But the strings
u1u2 and v1v2 have length d and thus dH(u, φ(v)) ≥ 1. The proof is similar
if φ is an anti-morphic involution. �

4.2.2 Hybridization Properties

Further algebraic properties of DNA languages are discussed that avoid
certain undesirable hybridizations (Fig. 4.1) as introduced by L. Kari and
coworkers (2006). Let Σ be an alphabet and let φ be a morphic or anti-
morphic involution on Σ∗.
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AGTA

GCTCATTG

(a)

AGTA

GTCATG

(b)

AGTA

TCATG

(c)

AGTA

GTCAT

(d)

Fig. 4.1 Different types of intermolecular hybridizations: (a) The codeword AGTA is
the reverse complement of a subword given by the concatenation of two codewords,
GCTC and ATTG; φ-comma-free codes avoid such hybridizations. (b) The codeword AGTA

is the reverse complement of a subword of another codeword; φ-infix-free codes avoid
such hybridizations. (c) The codeword AGTA is the reverse complement of a prefix of
another codeword; φ–prefix-free codes avoid such hybridizations. (d) The codeword
AGTA is the reverse complement of a suffix of another codeword; φ-suffix-free codes
avoid such hybridizations.

• A language L over Σ is called φ-infix-free if Σ+φ(L)Σ∗ ∩ L = ∅ and
Σ∗φ(L)Σ+ ∩ L = ∅.

• A language L over Σ is termed φ-prefix-free if φ(L)Σ+ ∩ L = ∅.
• A language L over Σ is called φ-suffix-free if Σ+φ(L) ∩ L = ∅.
• A language L over Σ is termed φ-bifix-free if L is both φ-prefix-free and

φ-suffix-free.
• A language L over Σ is called φ-comma-free if Σ+φ(L)Σ+ ∩ L2 = ∅.
We say that a language L containing the empty word ε has one of the above
properties if the language L \ {ε} has this property. A language L over Σ is
called φ-strict if L′ ∩ φ(L′) = ∅, where L′ = L \ {ε}. If a language has one of
the above properties and is strict, then the qualifier strictly is added.

Example 4.16. Let φ denote the reverse complementarity. The DNA language
L = {AGA, AC} with φ(L) = {TCT, GT} is φ-infix-free, while the DNA language
L′ = {AGTC, AC} with φ(L′) = {GTCT, GT} is not φ-infix-free, since AGTC ∈ L
belongs to Δ+φ(AC)Δ+ = Δ+GTΔ+.

The DNA language L = {AG, AC} with φ(L) = {CT, GT} and L2 =
{AGAG, AGAC, ACAG, ACAC} is φ-comma-free, while the DNA language L =
{AGC, TAC} with φ(L) = {GCT, GTA} is not φ-comma-free, since AGCTAC ∈ L2

lies in Δ+φ(AGC)Δ+ = Δ+GCTΔ+. ♦
Lemma 4.17. Let L be a language over Σ, and let φ be a morphic or anti-
morphic involution on Σ∗.

• If L is φ-infix-free, then L is both φ-prefix-free and φ-suffix-free and thus
φ-bifix-free.

• For a morphic involution φ, L is φ-prefix-free (suffix-free) if and only if
φ(L) is φ-prefix-free (suffix-free).

• For an anti-morphic involution φ, L is φ-prefix-free (suffix-free) if and
only if φ(L) is φ-suffix-free (prefix-free).

• L is φ-bifix-free if and only if φ(L) is φ-bifix-free.
• L is φ-comma-free if and only if φ(L) is φ-comma-free.

Theorem 4.18. For a morphic involution φ on Σ∗, the family of φ-prefix-
free (φ-suffix-free) languages over Σ is closed under concatenation.
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Proof. Let L1 and L2 be φ-prefix-free languages. Suppose L1L2 is not φ-
prefix-free. Then there are strings u1u2, v1v2 ∈ L1L2 so that u1u2 =
φ(v1v2)w = φ(v1)φ(v2)w for some w ∈ Σ+. But L1 is φ-prefix-free, so
u1 = φ(v1). It follows that φ(v2) is a prefix of u2, contradicting the assump-
tion that L2 is φ-prefix-free. �
Corollary 4.19. Let φ be a morphic involution on Σ∗, and let n ≥ 1 be an
integer. If L is a φ-prefix-free (φ-suffix-free) language over Σ, then Ln is
φ-prefix-free (φ-suffix-free).

Theorem 4.20. Let φ be a morphic or anti-morphic involution on Σ∗, and
let n ≥ 1 be an integer. If L is a φ-bifix-free language over Σ, then Ln is a
φ-bifix-free language.

Proof. If φ is a morphic involution, the result follows from Corollary 4.19. If
φ is an anti-morphic involution, then φ-prefixes and φ-suffixes interchange. �
Theorem 4.21. Let φ be a morphic or anti-morphic involution on Σ∗. If L
is a strictly φ-infix-free language over Σ, then L+ is both φ-prefix-free and
φ-suffix-free.

Proof. Suppose L+ is not φ-prefix-free. Thus, u1 . . . um = φ(v1 . . . vn)w for
some u1, . . . , um ∈ L, v1, . . . , vn ∈ L, and w ∈ Σ+. For a morphic involution
φ, we obtain u1 . . . um = φ(v1) . . . φ(vn)w and hence either u1 = φ(v1), or u1

is prefix of φ(v1), or φ(v1) is prefix of u1. All three conditions contradict the
assumption that L is strictly φ-infix-free. For an anti-morphic involution φ,
u1 . . . um = φ(vn) . . . φ(v1)w and the argument is similar. The assertion on
φ-suffix-freedom can be analogously proved. �
Theorem 4.22. Let φ be a morphic or anti-morphic involution on Σ∗. If L
is a φ-comma-free language over Σ, then L is φ-infix-free.

Proof. Let L be φ-comma-free over Σ. Suppose L is not φ-infix-free. We may
assume without restriction that uφ(x)v = y for some u ∈ Σ∗, v ∈ Σ+, and
x, y ∈ L. Thus y2 = uφ(x)vuφ(x)v and hence L is not φ-comma-free. A
contradiction. �

4.2.3 Small DNA Languages

Small DNA languages with predefined properties can be found by heuristic
methods. Here a heuristics employed by F. Barany and coworkers (1999) is
described which allows the construction of a set of oligonucleotides of length
24 nt. These oligonucleotides are termed zip-codes, as they are used in a DNA
microarray that combines PCR and ligase detection reaction (LDR) with zip-
code hybridization. Each zip-code is composed of six tetramers so that the
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full-length 24-mers have similar melting temperatures. First, the set of 256
(= 44) possible combinations in which the four nucleotides can be arranged as
tetramers were reduced to a set of 36 tetramers. These tetramers were chosen
so that they differ pairwise by at least two nucleotides. Moreover, tetramer
complements and tetramers that are equal to their reverse complement, like
TCGA, or repetitive, like CACA, were excluded. Furthermore, tetramers that
are either all A and T bases or all G and C bases were deleted. The resulting
36 tetramers were the following:

TTGA, TTAG, TCTG, TCCC, TCGT, TGTC, TGCG, TGAT, TACA,
CTTG, CTCA, CTGT, CCTA, CCAT, CGTT, CGAA, CACG, CAGC,
GTCT, GTGC, GCTT, GCAA, GGTA, GGAC, GATC, GACC, GAGT,
ATCG, ATAC, ACCT, ACGG, AGTG, AGCC, AGGA, AATC, AAAG.

Six tetramers were selected from this set for use in designing the zip-codes.
These tetramers differ from one another by at least two symbols:

ACCT, ATCG, CAGC, GACC, GGTA, TGCG .

These six tetramers were combined so that each zip-code differs from all
others by at least three alternating tetramers. This ensures that each zip-
code differs from all other zip-codes by at least six symbols. The resulting
zip-codes were the following:

5′ − TGCG|ACCT|CAGC|ATCG|ACCT|CAGC− 3′,
5′ − CAGC|ACCT|GACC|ATCG|ATCG|CAGC− 3′,
5′ − GACC|ACCT|TGCG|ATCG|GGTA|CAGC− 3′,
5′ − TGCG|GGTA|CAGC|ACCT|ACCT|TGCG− 3′,
5′ − CAGC|GGTA|GACC|ACCT|ATCG|TGCG− 3′,
5′ − GACC|GGTA|TGCG|ACCT|GGTA|TGCG− 3′,
5′ − TGCG|ATCG|CAGC|GGTA|ACCT|GACC− 3′,
5′ − CAGC|ATCG|GACC|GGTA|ATCG|GACC− 3′,
5′ − GACC|ATCG|TGCG|GGTA|GGTA|GACC− 3′ .

4.3 DNA Code Constructions and Bounds

Several constructions and bounds on DNA block codes are described which
are based on Hamming distance and deletion similarity.

4.3.1 Reverse and Reverse-Complement Codes

Algebraic coding provides upper and lower bounds on the error correction
capabilities of block codes. For this, let Σq be an alphabet with q elements.
A block code over Σq of length n with M codewords and minimum Hamming
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distance d is called (n, M, d, q) code, or simply (n, M, d) code if the alphabet
is known. Moreover, the maximum size of a block code over Σq of length n
with minimum Hamming distance d is denoted by Aq(n, d).

In the following, bounds on the size of DNA block codes are derived, based
on the work of R. Corn and coworkers (2001). For this, a (n, M, d) code is
called a reverse code if for any pair of codewords x and y, dH(x, y) ≥ d,
if x �= y, and dH(x, yR) ≥ d. Let AR

q (n, d) denote the maximum size of a
reverse code over Σq of length n and minimum Hamming distance d. The
reverse constraint limits hybridization between a codeword and the reverse
of a codeword.

A (n, M, d) code is called a reverse-complement code or RC code if for
all pairs of codewords x and y, dH(x, y) ≥ d, if x �= y, and dH(xC , yR) ≥
d. By Theorem 4.1, the latter inequality is equivalent to dH(x, yRC) ≥ d.
Let ARC

q (n, d) denote the maximum size of an RC code over Σq of length
n and minimum Hamming distance d. The reverse-complement constraint
limits hybridization between a codeword and the reverse complement of a
codeword. There is a close relationship between the maximum sizes of reverse
and reverse-complement codes.

Theorem 4.23. Let n ≥ 1 be an integer. If n is even, then

ARC
4 (n, d) = AR

4 (n, d) , (4.11)

and if n is odd then

ARC
4 (n, d) ≤ AR

4 (n + 1, d + 1) . (4.12)

Proof. Let n be even. Let C be a (n, M, d) reverse code. Write each codeword
of C in the form c = ab so that a and b have equal length. Claim that
C′ = {abC | ab ∈ C} is an RC code. Indeed, in view of Theorem 4.1,

dH(abC , uvC) = dH(a, u) + dH(bC , vC) = dH(a, u) + dH(b, v)
= dH(ab, uv) .

Moreover by Theorem 4.1,

dH(abC , (uvC)RC) = dH(abC , vRuRC) = dH(a, vR) + dH(bC , uRC)
= dH(a, vR) + dH(b, uR) = dH(ab, (uv)R) .

It follows that AR
4 (n, d) ≤ ARC

4 (n, d). The reverse inequality can be similarly
proved.

Let n be odd. Let C be a (n+1, M, d+1) reverse code. Puncture the code C
by deleting the center position. Assume that the center position is informative
in the sense that at least two codewords differ at the center position. The
resulting code is a (n, M ′, d) reverse code with M ′ ≤M . So the result follows
from the previous assertion for n even. �
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Hence, in order to derive bounds on the maximum size of RC codes, it is
sufficient to consider reverse codes.

Example 4.24. The DNA code C in Example 4.6 is a (4, 4, 2) reverse code. The
proof of Theorem 4.23 shows that the code C′ = {AGTA, ATTC, ATGA, CTTA} is
a (4, 4, 2) RC code. ♦
Theorem 4.25 (Johnson-Type Bound). Let n ≥ 1 be an odd integer. For
each integer d with 0 ≤ d ≤ n,

AR
4 (n, d) ≤ �1

4
AR

4 (n− 1, d)� . (4.13)

Proof. Let C be a (n, M, d) reverse code. By the pigeonhole principle, there
are at least �M/4� codewords which contain in the center position the same
symbol. By keeping just these codewords and deleting this position, the
resulting reverse code has length n − 1 and minimum Hamming distance
at least d. �
Theorem 4.26 (Halving Bound). Let n ≥ 1 be an integer. For each inte-
ger d with 0 < d ≤ n,

AR
4 (n, d) ≤ 1

2
A4(n, d) . (4.14)

Proof. Let C be a (n, M, d) reverse code. By hypothesis d > 0 and so the
sets C and CR = {cR | c ∈ C} are disjoint. Thus C′ = C ∪CR is a (n, 2M, d)
code. Indeed, Theorem 4.1 shows that for each pair of codewords x, y ∈ C,
dH(xR, yR) = dH(x, y) and dH(xR, (yR)R) = dH(x, yR). �
Example 4.27. The DNA code C in Example 4.6 is a (4, 4, 2) reverse code.
The proof of the halving bound shows that the following DNA code is a
(4, 8, 2) code:

C′ = {AGAT, ATAG, ATCT, CTAT, TAGA, GATA, TCTA, TATC} .

♦
Theorem 4.28 (Product Bound). Let n ≥ 1 be an integer. For all integers
d and w with 0 ≤ d ≤ n and 0 ≤ w ≤ n,

AR
4 (n, d) ≥ AR

2 (n, d) ·A2(n, d) . (4.15)

Proof. Let C1 be a binary (n, M1, d) reverse code, and let C2 be a binary
(n, M2, d) code. Consider the DNA code C = C1 #C2 = {x# y | x ∈ C1, y ∈
C2} of length n (Sect. 4.3.2). Clearly, the code C has minimum Hamming
distance d. Moreover, dH(a# b, (u# v)R) = dH(a# b, uR# vR) ≥ dH(a, uR),
as required. �
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Example 4.29. The code C1 = {1010, 1100} is a binary (4, 2, 2) reverse code,
and the code C2 = {0000, 1100} is a binary (4, 2, 2) code. The proof of the
product bound exhibits that the code C = C1 #C2 is a DNA (4,2,2) reverse
code with the codewords

CACA = 1010# 0000,

CCAA = 1100# 0000,

GTCA = 1010# 1100,

GGAA = 1100# 1100 .

♦

4.3.2 Constant GC-Content Codes

Bounds for DNA codes with constant GC-content are described, based on
the work of O. King (2003). To this end, define a mapping # from pairs of
binary strings of length n to DNA strings of length n, given by x # y = z,
where zi = A if xi = 0 and yi = 0, zi = C if xi = 1 and yi = 0, zi = G
if xi = 1 and yi = 1, and zi = T if xi = 0 and yi = 1. For instance, we
have 01100 # 01010 = AGCTA. This mapping is bijective, and a DNA block
code C factors into an even component E(C) = {x | x # y ∈ C} and an odd
component O(C) = {y | x# y ∈ C}. Conversely, if E and O are binary codes
of length n, then the set C = E#O = {x#y | x ∈ E, y ∈ O} is an DNA code
of length n so that E is the even component and O is the odd component of
the code C.

Define the Hamming weight of a codeword as the number of non-zero
components. A code is termed constant-weight if all codewords have the
same Hamming weight. Notice that the GC-content of a codeword z = x # y
equals the Hamming weight of its even component x. Therefore, we have the
following:

Lemma 4.30. A DNA block code is a constant GC-content code if and only
if its even component forms a constant-weight code.

Example 4.31. The DNA code constructed in Example 4.29 is a (4,4,2) reverse
code with GC-content w = 2. ♦
Example 4.32. Let X be a set of n elements called points. A Steiner system
is a set of k-subsets, termed blocks, of X with the property that any t-subset
of X is contained in exactly one block. This Steiner system is denoted by
S(t, k, n). Each block in a Steiner system can be viewed as an incidence
vector of length n. In this way, the Steiner system forms a binary block code
of length n given by the blocks as codewords. The total number of blocks in
S(t, k, n) providing the number of codewords is given by
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M =
(

n

t

)
/

(
k

t

)
.

Every codeword has Hamming weight k and so the code is a constant-weight
code.

For instance, the projective plane of order 2 is formed by seven points and
seven lines. The lines are 124, 235, 346, 457, 156, 267, and 137. These blocks
form a Steiner system S(2, 3, 7) and so provide a binary constant-weight code
of length n = 7 consisting of M = 7 codewords. ♦

Define the quantities AGC
4 (n, d, w), AGC,R

4 (n, d, w), and AGC,RC
4 (n, d, w) in

the same way as the respective quantities A4(n, d), AR
4 (n, d), and ARC

4 (n, d),
but with the additional requirement that each codeword has GC-content
w ≥ 0.

Theorem 4.33. Let n ≥ 1 be an integer, and let d and w be integers with
0 ≤ d ≤ n and 0 ≤ w ≤ n. If n is even then

AGC,RC
4 (n, d, w) = AGC,R

4 (n, d, w), (4.16)

and if n is odd then

AGC,RC
4 (n, d, w) ≤ AGC,R

4 (n + 1, d + 1, w) . (4.17)

The proof is similar to that for DNA codes with unrestricted GC-content.

Theorem 4.34 (Johnson-Type Bound). Let n ≥ 1 be an integer. For all
integers d and w with 0 ≤ d ≤ n and 0 < w < n,

AGC
4 (n, d, w) ≤ �2n

w
AGC

4 (n− 1, d, w − 1)�, (4.18)

AGC
4 (n, d, w) ≤ � 2n

n− w
AGC

4 (n− 1, d, w)� . (4.19)

Proof. Let C be a (n, M, d) code with constant GC-content w. By the pigeon-
hole principle, there is a position j in which at least �wM/2n� codewords have
nucleotide G, or there is a position j in which at least �wM/2n� codewords
have nucleotide C. Otherwise, the average GC-content would be less than w.
By keeping just these codewords and deleting the jth position, the resulting
code has length n− 1, GC-content w− 1, and minimum Hamming distance of
at least d. The second assertion is proved similarly, using some position with
at least �(n− w)M/2n� A’s or �(n− w)M/2n� T’s. �
Theorem 4.35 (Halving Bound). Let n ≥ 1 be an integer. For all integers
d and w with 0 < d ≤ n and 0 ≤ w ≤ n,

AGC,R
4 (n, d, w) ≤ 1

2
AGC

4 (n, d, w) . (4.20)
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The proof is analogous to that for reverse codes with unconstrained GC-
content.

Theorem 4.36 (Gilbert-Type Bound). Let n ≥ 1 be an integer. For all
integers d and w with 0 ≤ d ≤ n and 0 ≤ w ≤ n,

AGC
4 (n, d, w) ≥

(
n
w

)
2w2n−w

∑d−1
k=0

∑min{
k/2�,w,n−w}
i=0

(
w
i

)(
n−w

i

)(
n−2i
k−2i

)
22i

. (4.21)

Proof. The numerator provides the total number of DNA strings of length
n with GC-content w. The denominator gives the number of these strings
that have distance at most d − 1 from any fixed codeword x. In particular,(
w
i

)(
n−w

i

)(
n−2i
k−2i

)
22i is the number of strings y with GC-content w, dH(x, y) = k,

and for which there are exactly w − i positions in x and y that contain both
G or C. �

Define the quantities A2(n, d, w) and AR
2 (n, d, w) in the same way as the

respective quantities A2(n, d) and AR
2 (n, d), but with the additional require-

ment that each codeword has Hamming weight w ≥ 0.

Theorem 4.37 (Product Bounds). Let n ≥ 1 be an integer. For all inte-
gers d and w with 0 ≤ d ≤ n and 0 ≤ w ≤ n,

AGC
4 (n, d, w) ≥ A2(n, d, w) · A2(n, d), (4.22)

AGC,R
4 (n, d, w) ≥ AR

2 (n, d, w) ·A2(n, d), (4.23)

AGC,R
4 (n, d, w) ≥ A2(n, d, w) · AR

2 (n, d) . (4.24)

Proof. The second assertion will be proved, the other two assertions can be
similarly shown. Let C1 be a binary (n, M1, d) reverse code with constant
Hamming weight w, and let C2 be a binary (n, M2, d) code. Consider the
DNA code C = {x # y | x ∈ C1, y ∈ C2} of length n. Clearly, C has GC-
content w and minimum Hamming distance d. Moreover, dH(a#b, (u#v)R) =
dH(a# b, uR # vR) ≥ dH(a, uR), as required. �

4.3.3 Similarity-Based Codes

This section provides bounds on the size of RC-closed DNA codes based on
the recent work of A. D’yachkov and coworkers. For this, let N4(n, D) denote
the maximum size of an RC-closed DNA (n, D) code related to a given simi-
larity σ. Notice that Nβ

4 (n, D) and Nλ
4 (n, D) are analogously defined, where

the upper indices indicate that the corresponding codes are based on the
similarity functions σβ and σλ, respectively. As common block subsequences
are common subsequences per se, it follows that Nλ

4 (n, D) ≤ Nβ
4 (n, D).
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Let us start with an upper bound on the code size by using a well-known
argument from algebraic coding.

Theorem 4.38 (Hamming Bound). Let n ≥ 1 be an integer. We have

Nβ
4 (n, 1) ≤ (4n−1 + 4)/2 , (4.25)

and for any integer D, 2 ≤ D ≤ n,

Nβ
4 (n, D) ≤ 4n

∑
D/2�
i=0

(
n
i

)
3i

. (4.26)

Proof. Consider an RC-closed DNA (n, 1) code C with M codewords. Each
codeword x has one or two different tail subsequences of length n− 1, which
are obtained by deleting the first or the last symbol from x. Let M1 denote
the number of codewords in C which have one tail subsequence, and let
M2 denote the number of codewords in C with two tail subsequences. Then
M = M1 + M2.

A codeword in which the tail subsequences coincide is composed of a single
symbol. Thus, M1 ≤ 4. Moreover, for distinct codewords x and y in C, we
have by definition σβ(x, y) ≤ n−2 and thus the resulting M1+2M2 strings of
length n− 1 are all distinct. Hence, M1 +2M2 ≤ 4n−1 and the result follows.

Let D ≥ 2. Take a DNA block code C of length n and Hamming distance
D + 1. Put r = �D/2� and provide each codeword x ∈ C with a sphere
B4(x) = {y | dH(x, y) ≤ r} of radius r centered at the codeword. The
denominator in Eq. (4.26) provides the number of words in the sphere. For
distinct codewords x and y in C, we have by hypothesis dH(x, y) ≥ D+1 and
thus the spheres around distinct codewords are disjoint. Hence, the assertion
follows. �
Example 4.39. Consider the set of 43 = 64 DNA codewords x = a1 . . . a4 of
length n = 4 satisfying the parity check condition a1 + . . . + a4 ≡ 0 mod 4
(Table 4.1).

This code contains an RC-closed (4, 1) code of 34 elements with block
distance D = 1 and block deletion similarity 2 (by deleting the pairs marked
by the symbol ‘-’). Hence, the upper bound Nβ

4 (4, 1) = 34 in Theorem 4.38
is tight.

Moreover, the latter code contains an RC-closed (4, 1) code of 20 elements
with distance D = 1 and deletion similarity 2 (by taking the pairs marked
by the symbol ‘+’). Therefore, Nλ

4 (4, 1) ≥ 20. ♦
Finally, lower bounds on the code size are provided by using a random

coding method. To this end, let n ≥ 1 and s be integers with 0 ≤ s ≤ n, and
let σ be a similarity function on Δn. Define

P (n, s) = {(x, y) ∈ Δn ×Δn | σ(x, y) = s} (4.27)
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Table 4.1 A DNA block code of length 4 satisfying the parity check condition. The
codewords are divided into pairs of mutually reverse complementary codewords. In
each row, each pair is obtained from the first pair by a cyclic shift.

0000 3333+
0013 0233 3001 2330- 1300 3302+ 0130 3023-
0022 1133+ 2002 1331- 2200 3311+ 0220 3113-
0031 2033 1003 0332- 3100 3320 0310 3203-
0103 0323+ 3010 3230- 0301 2303+ 1030 3032-
0112 1223 2011 2231- 1201 2312+ 1120 3122-
0121 2123 1012 1232- 2101 2321 1210 3212-
0202 1313 2020 3131-
0211 2213+ 1021 2132- 1120 1322+ 2110 3221-
1111 2222+

and

PRC(n, s) = {x ∈ Δn | σ(x, xRC ) = s} . (4.28)

Consider random strings x, y ∈ Δn with independently identically distributed
symbols having the uniform distribution on Δ. The corresponding random
variables σ(x, y) and σ(x, xRC ) have the respective probability distributions

Pr{σ(x, y) = s} =
|P (n, s)|

42n
(4.29)

and

Pr{σ(x, xRC) = s} =
|PRC(n, s)|

4n
. (4.30)

Take the probabilities

P1(n, D) = Pr{σ(x, xRC) ≥ n−D} =
1
4n

D∑

t=0

|PRC(n, n− t)| (4.31)

and

P2(n, D) = Pr{σ(x, y) ≥ n−D} =
1

42n

D∑

t=0

|P (n, n− t)| . (4.32)

The following result holds for both deletion similarities.

Theorem 4.40 (Random Coding Bound). Let n ≥ 1 be an integer. For
any integer D, 1 ≤ D ≤ n− 1,

N4(n, D) ≥
⌊ 1

2 − P1(n, D)
2P2(n, D)

⌋
+ 1 . (4.33)
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Proof. Consider an RC-closed DNA code C of length n with codewords
x1, . . . , x2N so that xRC

i = xN+i, 1 ≤ i ≤ N . A codeword xi is called D-
bad in C if there is an index j with j �= i so that σ(xi, xj) ≥ n−D. A pair of
reverse complementary codewords (xi, xN+i) is D-bad in C provided that at
least one of them is D-bad. This event is denoted by E(i, D). If all pairs of
codewords in C are D-good (i.e., not D-bad), then C is an RC-closed DNA
(n, D) code.

Take an ensemble of these codes C so that all n × N components of the
codewords x1, . . . , xN are independently identically distributed random vari-
ables with the uniform distribution on Δ. The distribution of the random
variable σ(xi, xj), i �= j, has the form (4.29) or (4.30) depending on whether
or not the equality |i− j| = N is satisfied. By the additivity of independent
events, we obtain the inequality

Pr{E(i, D)} ≤ (2N − 2)P2(n, D) + P1(n, D) . (4.34)

Put

N =
⌊ 1

2 − P1(n, D)
2P2(n, D)

⌋
+ 1 . (4.35)

Then Eq. (4.34) yields that the probability of the event E(i, D), 1 ≤ i ≤ N ,
does not exceed 1/2. Thus, the average number of D-bad pairs in a code C
from the ensemble does not exceed �N/2�. Hence, there exists a code C with
at least �N/2� D-good pairs. These D-good pairs form an RC-closed DNA
(n, D) code of size at least 2�N/2� ≥ N − 2. �
Theorem 4.41. If D ≥ 1 is a fixed integer and n→∞, then

Nλ
4 (n, D) ≥ (D!)2

(
4
32

)D 4n

n2D
(1 + o(1)) . (4.36)

Proof. Let z be a string of length s over Δ, 0 ≤ s ≤ n. Let S4(z, n) denote
the set of all superstrings x of length n over Δ that have z as subsequence.
The size of S4(z, n) is independent of z and is given by

|S4(n, s)| =
n−s∑

k=0

(
n

k

)
3k . (4.37)

It follows that

|Pλ(n, s)| ≤ 4s|S4(n, s)|2 (4.38)

and if s ≥ 1 is even,

|PRC,λ(n, s)| ≤ 4s/2|S4(n, s)| . (4.39)
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Moreover, the set PRC,λ(n, s) is empty if s ≥ 1 is odd. The bounds (4.38)
and (4.39) can be used to establish the probabilities (4.31) and (4.32), respec-
tively. The result then follows from the random coding bound. �
Theorem 4.42. If D ≥ 1 is a fixed integer and n→∞, then

Nβ
4 (n, D) ≥ 1

4
D!
4D

4n

nD
(1 + o(1)) . (4.40)

Proof. Claim that for any integer s with 1 ≤ s ≤ n, we have

|P β(n, s)| ≤ 4s

min{s,n−s+1}∑

k=1

(
s− 1
k − 1

)[
4n−s

(
n− s + 1

k

)]2

. (4.41)

Indeed, for a fixed string z of length s over Δ, consider the block k-partition
decomposing the symbols of z into k blocks, that is, Z = (B1, . . . , Bk) with
|Bi| ≥ 1 and

∑
i |Bi| = s. Assume that z is a subsequence of a string x of

length n over Δ. In this case, the partition B must be β-matched with x,
that is, there exists an embedding of z into x so that each block Bi has no
blanks in x and any two neighboring blocks are separated in x.

The number of sequences z of length s over Δ is 4s. Consider all possible
partitions Z with the number of blocks bounded by k ≤ min{s, n − s + 1}.
For a fixed integer k, the number of such partitions equals

(
s−1
k−1

)
. For each

partition, we consider two sequences of length n−s that complete z to strings
x and y of length n. Each of these strings is divided into k+1 blocks that will
be inserted between the corresponding blocks of the partition Z. The first
and the last block may be empty, while all other blocks are non-empty. The
number of such partitionings equals

(
n−s+1

k

)
. This proves the claim.

Clearly, the set PRC,β(n, s) is empty if s ≥ 1 is odd. Moreover, if s is an
even integer with 2 ≤ s ≤ n,

|PRC,β(n, s)| ≤ 4s/2

min{s,n−s+1}∑

k=1

(
s/2− 1
�k/2� − 1

)[
4n−s

(
n− s + 1

k

)]
.(4.42)

This inequality can be similarly proved as the above assertion. The Eqs. (4.41)
and (4.42) can be used to establish the probabilities (4.31) and (4.32), respec-
tively. The result then follows from the random coding bound. �

4.4 In Vitro Random Selection

In vitro evolution makes it possible to generate molecules with desired prop-
erties. In particular, libraries of non-crosshybridizing oligonucleotides can be
evolved in a test tube.
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4.4.1 General Selection Model

The design of biomolecules with defined structure and function is an unattai-
ned goal. Today, protein folding and catalysis are incompletely understood.
Synthetic enzyme mimics that are rationally designed are still inefficient cat-
alysts in comparison with natural enzymes. Instead of rational design, more
and more evolutionary approaches are used to create biomolecules with the
desired function. These methods require the preparation of a large library
of DNA, RNA, or proteins from which those with desirable properties are
selected and amplified. In such experiments, the molecules compete with each
other and only those that succeed will be amplified. The amplified molecules
are usually subject to a few rounds of selection and selective amplification
so that in the end, the molecules with the best properties will be obtained.
In every round, the selection pressure can be enhanced. Between two rounds,
the pool of molecules may be mutated in order to increase the diversity of
the present molecules. In this way, each round consists of mutation, selection,
and amplification of molecules.

The first step involves the preparation of a library of compounds called the
seed set. To this end, a DNA synthesizer will be programmed so that the single
DNA strands have constant end sequences needed for primer recognition, but
a randomized sequence in the middle. The mixture obtained consists of about
1015 to 1016 individual molecules.

This mixture can be put onto an affinity column, which is a column filled
with a material (e.g., polymer or hydrophobic silica gel) onto which a guest
molecule is specifically bound (Fig. 4.2). Those individual molecules that have
some affinity to the column, and most likely to the compound bound to the
surface, will be retarded. These molecules are eluted by increasing the salt
concentration of the eluent. The corresponding fraction is collected and the
contained molecules are amplified by PCR. In this way, a pool of compounds
is obtained in which binding DNA or RNA molecules are enriched. This pool
is then again applied to the affinity column and the whole process of selection
and amplification is repeated. The selection pressure can be changed by elut-
ing with a more shallow salt gradient and by collecting only compounds that
come off the column at higher salt conditions. This will elute only the most
strongly bound molecules. A special trick to find highly selective compounds
is to randomize each selected pool again. This is achieved by modifying the
PCR reaction using error-prone DNA polymerase to copy a DNA strand. The
error rate can be tuned to be between one error per 1 to every 20 base pairs.

4.4.2 Selective Word Design

An in vitro evolutionary method that allows the design of DNA words for
DNA computation was proposed by R. Deaton and coworkers (1996). To this



4.4 In Vitro Random Selection 119

�

�

�

�

DNARNA

RT

dNTPs

Selection dNTPs PCR

Transcription

NTPs

RNA DNA amplicon

Fig. 4.2 RNA selection model: First, RNA is selected and copied into DNA using
reverse transcriptase (RT). The obtained DNA is amplified and transcribed again
into RNA before the next round of selection. All remaining DNA after each round
of selection can be digested with DNAse. The finally selected RNA will be reverse-
transcribed into DNA and the DNA will be sequenced.

end, the seed set consists of oligonucleotides of the same length, which have
primer sequences at both ends and a randomized segment somewhere in the
middle. Each round consists of heating the mixture to a high temperature and
then rapidly cooling to room temperature or below. This quenching step dur-
ing annealing should increase the likelihood that highly mismatched molecules
are formed that may have complementary primer strands attached, but no
complementary strand to the randomized segment in the middle. The forma-
tion of highly mismatched molecules was confirmed by experimental design.
Then PCR is preformed at low temperature. This will selectively enhance
highly mismatched molecules, while molecules closer to being Watson-Crick
complements are not enhanced. In this way, a huge library of very mismatched
DNA words can be selectively generated. This method has the advantage that
the library is derived under conditions that are somewhat similar to that used
for DNA computing.
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Concluding Remarks

DNA codes that satisfy certain combinatorial constraints are very useful in
DNA computing to guarantee the robustness of DNA computations. Appro-
priate DNA codes may be constructed in several ways. First, DNA codes may
be designed by using a language-theoretic approach. This approach is largely
definition-oriented and currently lacks constructive methods to derive larger
DNA codes that simultaneously satisfy several combinatorial constraints. Sec-
ond, methods from traditional coding theory can be adopted to design DNA
codes. For this, quaternary codes with additional algebraic properties (e.g.,
linearity, cyclicality) may be studied by using the existing machinery of alge-
braic coding. This branch seems to be the most promising direction of DNA
coding. Third, DNA codes may be developed by making use of similarity-
based coding. This field, initiated by the pioneering work of V. Levenshtein,
regained attention through the recent work of A. D’yachkov and coworkers.
However, similarity-based coding is still in its infancy as an algebraic descrip-
tion is lacking.
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Chapter 5

Non-Autonomous DNA Models

Abstract Early biomolecular computing research focussed on laboratory-
scale human-operated DNA models of computation for solving complex com-
putational problems. These models generate large combinatorial libraries of
DNA to provide search spaces for parallel filtering algorithms. Many different
methods for library generation, solution filtering, and output generation were
experimentally studied. This chapter addresses the basic filtering models and
describes two basic computationally complete and universal DNA models of
computation, splicing model and sticker model.

5.1 Seminal Work

Adleman’s first experiment and Lipton’s first theoretical work can be consid-
ered as the seminal work in DNA computing.

5.1.1 Adleman’s First Experiment

The idea of performing massively parallel computations in nanotechnology
was first stated by R. Feynman in the late 1950s. In 1994, L. Adleman was the
first to demonstrate by a DNA experiment that biomolecular computations
are feasible. In this seminal experiment, Adleman solved a small instance
of the Hamiltonian path problem. For this, DNA molecules are used as a
medium for information storage and this information is manipulated by stan-
dard biotechnological operations.

Adleman’s first experiment will be briefly recalled. For this, let G
be a directed graph. In particular, Adleman employed the graph in
Figure 5.1. This graph contains exactly one Hamiltonian path given by
(v0, v1, v2, v3, v4, v5, v6). He aimed to find Hamiltonian paths in G with ini-
tial vertex v0 and final vertex v6. In Adleman’s approach, each vertex vi is

Z. Ignatova et al., DNA Computing Models, 123
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Fig. 5.1 Adleman’s graph.

encoded by a single-stranded DNA molecule of 20 nt. Each edge eij connect-
ing vertex vi with vertex vj is encoded by a single-stranded DNA molecule
that consists of the complement of the second 3’ half-mer of the DNA strand
of vi and the complement of the first 5’ half-mer of the DNA strand of vj .
For instance, if the vertices v0 and v1 are respectively encoded as

5′ − AGAGACAG− 3′ and 5′ − ATTCTTTT− 3′

then the edge e = v0v1 is encoded as

3′ − TGTCTAAG− 5′ .

Thus, hybridization and ligation yields the partially double-stranded molecule
indicating the path (v0, v1),

5′ − AGAGACAGATTCTTTT− 3′

3′ − TGTCTAAG− 5′

Adleman’s algorithm can be summarized as follows:

1. Generate random paths in the graph.
2. Keep only those paths that begin with the initial vertex vs = v0 and end

with the final vertex ve = v6.
3. Retain only those paths that hold all vertices in the graph.
4. Keep only those paths that contain all vertices in the graph at least once.
5. Read out Hamiltonian paths (if any).

The first step provides double-stranded DNA molecules encoding random
paths in the graph (Fig. 5.2). This is achieved by annealing and ligation. The
second step is implemented by amplifying the product of the first step via
PCR. Here, only those single-stranded DNA molecules encoding paths that
begin with vs and end with ve are amplified. The third step needs length
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Fig. 5.2 Encoding of a Hamiltonian path in Adleman’s graph.

separation of DNA molecules and is implemented by gel electrophoresis. The
fourth step is accomplished by affinity purification. This process permits
single-stranded DNA molecules containing a specific subsequence encoding
a vertex vi of the graph to be filtered out from a pool of strands. For this,
strands complementary to the strand vi are synthesized and attached to mag-
netic beads. The pool of strands is then passed over the beads. Those strands
containing the substrand vi anneal to the beaded complementary strands
and can be retained, while the other strands are washed out. Affinity purifi-
cation is iteratively performed for each vertex of G. The single-stranded DNA
molecules surviving this step will encode Hamiltonian paths in G. The last
step is implemented by graduated PCR. For this, primer strands v0 and vi

are taken and the path molecules between these primer strands are amplified.
Then the product is length separated by gel electrophoresis to determine the
position of the vertex vi on the path. This process is repeated for each ver-
tex vi, 1 ≤ i ≤ 6. This procedure was successfully implemented in vitro by
Adleman, requiring seven days of laboratory work.

Adleman’s first experiment can be formally described by a memory-less
filtering model. This model is based on the data structure of test tubes. A
test tube is a finite multiset of strings over a finite alphabet, preferably the
DNA alphabet. The operations used by Adleman are the following:

• prefix-extract (T, x): Take a test tube T and a string x, and create a test
tube that contains all strings in T that have the string x as a prefix.

• postfix-extract (T, x): Consider a test tube T and a string x, and generate
a test tube that comprises all strings in T that have the string x as a
postfix.

• substring-extract (T, x): Pick a test tube T and a string x, and provide a
test tube that holds all strings in T that have the string x as a substring.

• length-separate (T, m): Start with a test tube T and a positive integer m,
and produce a test tube that contains all strings in T which have length
≤ m.

• detect (T ): Pick a test tube T and output “yes” if T contains at least one
DNA molecule; otherwise, output “no”.

All extract operations select strings and thus may require the amplification of
the resulting test tubes by PCR. A computation comprises a finite sequence
of these operations. A computation starts with an initial test tube and ends
with one or more final test tubes. Several test tubes may exist simultaneously
during a computation.
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Example 5.1. Given a graph G = (V, E) with vertex set V = {v1, . . . , vn}.
Take an initial test tube T consisting of a multiset of strings vi1 . . . vik

, 1 ≤
i1, . . . , ik ≤ n, k ≥ 1, over the alphabet V , which provide paths in G. Assume
that each vertex vi is encoded by a DNA strand of length m nt. The algorithm
AdlemanHamiltonianPaths filters out the Hamiltonian paths in G that
start with v1 and end with vn. ♦

Algorithm 5.1 AdlemanHamiltonianPaths(T, G)
Input: input tube T , graph G
1: T ← prefix-extract (T, v1)
2: T ← postfix-extract (T, vn)
3: T ← length-separate (T, m · n)
4: for i← 2 to n− 1 do
5: T ← substring-extract (T, vi)
6: end for
7: return detect (T )

5.1.2 Lipton’s First Paper

The results of L. Adleman was first considered by R. Lipton (1995), providing
DNA algorithms for the satisfiability problem and other NP-complete prob-
lems. For this, let F be a Boolean expression in n variables given in CNF
such as

F = (x1 + x2)(x1 + x2).

Lipton suggested designing for each variable xi two single-stranded DNA
molecules of length 20 nt, one representing “true”, xT

i , and the other repre-
senting “false”, xF

i . Using this encoding, Lipton’s DNA model employs the
following operations:

• extract (T, i, b): Consider a test tube T , an integer i, and a value b ∈ {0, 1},
and produce a new test tube containing all strings in T for which the ith
entry is equal to xT

i (xF
i ) if b = 1 (b = 0). The remainder of this extraction

is denoted by rem(T, i, b).
• merge (T1, . . . , Tn): Take test tubes T1, . . . , Tn, produce their union T1 ∪

. . . ∪ Tn, and place the result into the (possibly empty) tube Tn.

Lipton’s algorithm takes an initial test tube T consisting of a multiset
of strings a1 . . . an, where ai encodes a truth value of the ith variable, that
is, ai = xT

i or ai = xF
i . The test tube T is formed in the same way that

L. Adleman designed the initial test tube for the paths to find Hamiltonian
paths in a graph. Here, a specific graph Gn is used for Boolean formulas with
n variables (Fig. 5.3).

The algorithm iteratively extracts those DNA strands that satisfy the dis-
junctive clauses. For instance, in terms of the disjunctive clause x1+x2, DNA
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strands encoding xT
1 and xF

2 are selected, while the remaining DNA strands
are discarded. The final test tube contains only those truth assignments that
satisfy all disjunctive clauses and thus the Boolean expression.

Algorithm 5.2 SatisfiabilityLipton(T, F )
Input: input tube T , CNF F in variables x1, . . . , xn, test tube Tc initially empty
1: for each disjunctive clause c in F do
2: for each literal a in c do
3: if a = xi then
4: T ′ ← extract (T, i,1)
5: T ← rem(T, i, 1)
6: merge (T ′, Tc)
7: else
8: T ′ ← extract (T, i,0)
9: T ← rem(T, i, 0)

10: merge (T ′, Tc)
11: end if
12: end for
13: clear (T )
14: T ← Tc

15: end for
16: return detect (T )

5.2 Filtering Models

This section addresses several basic filtering models of DNA computing.

5.2.1 Memory-Less Filtering

First, a basic filtering model developed by L. Adleman (1996) will be dis-
cussed, which is memory-less in the sense that the strings themselves do not
change during a computation. This model is based on the following operation:
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• separate (T, T +, T−, x): Consider a test tube T and a string x, and produce
two new tubes, T + and T−, where T + consists of all strings in T which
contain the string x as a subsequence, while T− embraces all strings in T
which do not hold the string x as a subsequence.

Example 5.2. Given a graph G = (V, E) with vertex set V = {v1, . . . , vn}
and edge set E = {e1, . . . , em} so that ei = vi1vi2 , 1 ≤ i ≤ m. The input
test tube T is a multiset of strings a1 . . . an over the alphabet Σ = {bi, gi, ri |
1 ≤ i ≤ n}, so that the vertex vi is assigned the color ai, 1 ≤ i ≤ n. The
algorithm 3-Colorings computes the 3-colorings of G available in the initial
test tube. This is achieved by singling out all strings that provide edges whose
end vertices are equally colored. ♦

Algorithm 5.3 3-Colorings(T, G)
Input: input tube T , graph G
1: T ′ ← T
2: for i← 1 to m do
3: separate (T ′, Tr, Tb,g, ri1 )
4: separate (Tb,g , Tb, Tg, bi1 )
5: separate (Tr, T+

r , T−
r , ri2)

6: separate (Tb, T+
b , T−

b , bi2 )
7: separate (Tg , T+

g , T−
g , gi2 )

8: merge (T−
r , T−

b , T−
g )

9: T ′ ← T−
g

10: end for
11: return detect (T ′)

5.2.2 Memory-Based Filtering

L. Adleman (1996) extended the memory-less model to a memory-based fil-
tering model by adding the so-called flip operation. For this, take the alphabet
Σ = {b1, . . . , bn} ∪ {c1, . . . , cn}. The flip operation is defined as follows:

• flip (T, bi): Take a test tube T and a character bi ∈ Σ, and produce
a new test tube T (bi) = {x(bi) | x ∈ T }, where the string x(bi) coin-
cides with x up to the ith position, at which it contains bi provided that
x holds ci.

• flip (T, ci): Pick a test tube T and a character ci ∈ Σ, and create a
new test tube T (ci) = {x(ci) | x ∈ T }, where the string x(ci) coin-
cides with x up to the ith position, at which it holds ci provided that
x contains bi.
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The flip operation switches bi to ci (ci to bi) in all strings that contain bi

(ci). For instance, if x = b1b2b3, then x(b2) = x and x(c2) = b1c2b3.
This extended model allows the implementation of n-bit registers. For

this, notice that each string a1 . . . an with ai ∈ {bi, ci}, 1 ≤ i ≤ n, can be
interpreted as an n-bit register, where the ith location contains 1 if ai = bi,
and 0 if ai = ci.

Example 5.3. Given an initial test tube T consisting of a multiset of strings
a1 . . . an with ai ∈ {bi, ci}, 1 ≤ i ≤ n. The algorithm CondSetReg sets in
each string the kth bit to 1, provided that the ith bit equals 0 and the jth
bit equals 1. ♦

Algorithm 5.4 CondSetReg(T, i, j, k)
Input: input tube T , positive integers i, j, k
1: separate (T, T+, T−, ci)
2: separate (T+, T++, T+−, bj)
3: T ′ ← flip (T++, bk)
4: merge (T−, T+−, T ′)
5: return T ′

5.2.3 Mark-and-Destroy Filtering

A filtering model based on the “mark and destroy” paradigm was first pro-
posed by D. Hodgson and coworkers (1996). This model is memory-less and
consists of the merge operation plus two further operations:

• remove (T, {x1, . . . , xm}): Take a test tube T and a set of strings x1, . . . , xm

and remove any string in T that contains at least one occurrence of the
string xi as a substring, 1 ≤ i ≤ m.

• copy (T, {T1, . . . , Tm}): Start with a test tube T and produce a number of
m copies Ti of T .

Example 5.4. Take an initial test tube T consisting of a multiset of strings
p1i1p2i2 . . . pnin, where pj encodes the jth position and ij is a number from
the set {1, . . . , n}, 1 ≤ j ≤ n. The algorithm Permutations uses the test
tube T to provide all n-permutations of n (i.e., all strings which contain each
number from the set {1 . . . , n} exactly once). For instance, 3-permutations
of 3 are p11p22p33 and p12p23p31. Clearly, the number of n-permutations of
n is n! (i.e., n factorial). The remove operation delivers all strings that hold
i at the jth position but not at any subsequent position k > j. ♦

A variant of the parallel filtering model was used by Q. Ouyang and
coworkers (1997) to tackle the maximum clique problem.
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Algorithm 5.5 Permutations(T, n)
Input: input tube T , positive integer n
1: for j ← 1 to n− 1 do
2: copy (T, {T1, . . . , Tn})
3: for i← 1 to n do
4: for k ← j + 1 to n do
5: remove (Ti, {pj1, . . . , pji− 1, pji + 1, . . . , pjn, pki})
6: end for
7: end for
8: merge (T1, . . . , Tn, T )
9: end for

10: return T

Example 5.5. Let G = (V, E) be a graph with vertex set V = {v1, . . . , vn}
and let G′ = (V, E′) be the associated complementary graph. Let E′ =
{e1, . . . , em} be the edge set of G′ and write ei = vi1vi2 , 1 ≤ i ≤ m.

Take an initial test tube T consisting of a multiset of strings p1i1 . . . pnin,
where pj encodes the jth position and ij stands for 0 or 1, 1 ≤ j ≤ n.
Each such string provides a subset of V consisting of all vertices vj for which
ij = 1, 1 ≤ j ≤ n. The algorithm MaximumCliques uses the test tube T
to filter out all maximum cliques in G. For this, it iteratively removes all
strings that correspond to subsets of V in which two vertices are adjacent
in the complementary graph G′. Notice that two vertices adjacent in the
complementary graph G′ are not adjacent in the original graph G, and vice
versa. Thus, two vertices adjacent in the complementary graph G′ cannot be
members of the same clique. Hence, after the first loop, the only strings left
in test tube T correspond to cliques in G. Suppose that each substring pj

has length l nt, and the substrings ij = 0 and ij = 1 have lengths l0 nt and
l1 nt, respectively. Then the string p1i1p2i2 . . . pnin with k substrings ij = 1
has length nl + kl1 + (n − k)l0 nt. Assume that l1 < l0. Then the larger the
clique in G the smaller the corresponding string, and vice versa. Hence, the
maximum cliques can be filtered out by length separation. A variant of this
algorithm was implemented by Qi Ouyang et al. in the laboratory. ♦

Algorithm 5.6 MaximumCliques(T, G)
Input: input tube T , graph G
1: for i← 1 to m do
2: remove (T, {pi11})
3: remove (T, {pi21})
4: end for
5: for k ← 1 to n do
6: if detect (length-separate (T, nl + kl1 + (n− k)l0)) then
7: return k
8: end if
9: end for
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Fig. 5.4 Labelling of chess board.

5.2.4 Split-and-Merge Filtering

A filtering model based on the “split and merge” paradigm was first
described by L. Landweber and coworkers (2000). It uses RNA as a com-
putational substrate and addresses a variant of the satisfiability problem,
the so-called knight problem. The knight problem looks for configurations
of knights on an n × n chess board so that no knight is attacking any
other.

Consider the knight problem on a 3 × 3 chess board (Fig. 5.4). The
valid configurations on the board are described by the following Boolean
expression:

F = (x1 + x6x8)(x2 + x7x9)(x3 + x4x8)(x4 + x3x9)
(x6 + x1x7)(x7 + x2x6)(x8 + x1x3)(x9 + x2x4) . (5.1)

For instance, the expression x1 + x6x8 provides the valid configurations for
square 1. That is, there is no knight at square 1 (i.e., x1 = 0), or there are no
knights at squares 6 and 8 (i.e., x6 = x8 = 0). The number of squares to be
tested for valid configurations can be reduced as the Boolean expression (5.1)
is equivalent to the following expression

F = (x1 + x6x8)(x2 + x7x9)(x3 + x4x8)(x4 + x3x9)(x6 + x1x7) . (5.2)

The algorithm KnightProblem provides a biomolecular algorithm for
the knight problem. To this end, design for each variable xi two single-
stranded DNA molecules of length l nt, one representing “true”, xT

i , and
the other representing “false”, xF

i . The initial test tube T consists of a
multiset of RNA strings a1 . . . am, where m is the number of squares and
ai encodes whether a knight is present at the ith square, ai = xT

i , or
not, ai = xF

i (Fig. 5.5). The test tube is constructed from an appro-
priate DNA test tube by in vitro transcription. Landweber and cowork-
ers prepared the DNA test tube by “mix and split” phosphoramitide
chemistry.
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Algorithm 5.7 KnightProblem(T, n)
Input: input tube T , n× n square
1: for each square i do
2: split (T, T1, T2)
3: remove (T1, {xT

i })
4: remove (T2, {xF

i })
5: for each square j attacking square i do
6: remove (T2, {xT

j })
7: end for
8: merge (T1, T2, T )
9: end for

10: return detect (T )

For each square i, the test tube is equally split into two tubes T1 and T2.
The subsequent removal operations remove from test tube T1 all strands that
have a knight at square i. Moreover, in test tube T2 all strands are removed
that have no knight at square i as well as strands that provide a knight in
an attacking position. Thus, the merging of both test tubes provides valid
configurations for the ith square.

The removal operation makes use of the enzyme Ribonuclease H
(RNase H). For instance, in order to remove all strands that have a knight
at square i, DNA strands which are complementary to the substrand xT

i

are added to the solution. These DNA strands anneal to the RNA strands
containing the substrand xT

i and in this way form DNA/RNA duplexes.
Then RNase H is added to the solution. This enzyme digests DNA/RNA
duplexes by cleaving the 3’-O-P bond of RNA to produce 3’-hydroxyl and
5’-phosphate terminated products, while it leaves intact those RNA strands
with the substrand xF

i .
The experiment conducted by Landweber et al. for the 3×3 knight problem

was encouraging in the sense that 43 sampled output strands contained only
one illegal configuration.

A similar “split and merge” approach was used by L. Adleman and cowork-
ers (2002) to tackle a 3-SAT problem with 20 variables in a DNA based
experiment. For this, let F be a Boolean expression in n variables given in
CNF such as

F = (x2 + x3)(x1 + x2 + x3)(x1 + x2) .

prefix a1 sp a2 sp

...

sp a9 suffix

Fig. 5.5 Encoding of strands in the initial test tube for the 3 × 3 knight problem.
The prefix and suffix regions facilitate PCR. Each literal is represented by a DNA
strand of 15 nt and two adjacent literals are separated by spacers (sp) of 5 nt.
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For each variable xi, two single-stranded DNA molecules of length l nt are
designed, one representing “true”, xT

i , and the other respresenting “false”,
xF

i .
The algorithm 3-Satisfiability takes an initial test tube T consisting

of a multiset of strings a1 . . . an, where ai encodes whether the ith vari-
able is assigned the value “true”, ai = xT

i , or “false”, ai = xF
i . Thus each

truth assignment of the Boolean expression is encoded by a DNA strand of
length ln nt. But a Boolean expression in CNF evaluates to “true” if and
only if each disjunctive clause evaluates to “true”. Therefore, the algorithm
iteratively removes those DNA strands that do not satisfy the disjunctive
clauses. For instance, in terms of the disjunctive clause x1 + x2 + x3, DNA
strands encoding xT

1 , xF
2 , and xT

3 are retained, while DNA strands encod-
ing xF

1 , xT
2 , or xF

3 are discarded. This can be achieved by adding DNA
strands to the solution that are complementary to xF

1 , xT
2 , or xF

3 . These
strands bind to DNA strands that are falsified by the disjunctive clause
and thus are partially double-stranded. Such strands can be separated from
the single DNA strands by length separation. Hence, the final test tube
contains only those truth assignments that are satisfied by the Boolean
expression.

In the experiment conducted by Adleman et al, the truth assignments
of the variables, xT

i and xF
i , were encoded by DNA strands of 15 nt, and

thus each DNA strand in the initial test tube was 300 nt long. The chosen
Boolean expression (3-SAT) had a unique truth assignment and was indeed
detected in the final test tube. This experiment is the largest problem instance
successfully solved by a DNA experiment to date.

Algorithm 5.8 3-Satisfiability(T, F )
Input: input tube T , CNF F in variables x1, . . . , xn

1: for each disjunctive clause c in F do
2: for each literal a in c do
3: if a = xi then
4: remove (T, xF

i )
5: else
6: remove (T, xT

i )
7: end if
8: end for
9: end for

10: return detect (T )

5.2.5 Filtering by Blocking

A filtering model based on the paradigm of blocking was first described by G.
Rozenberg and coworkers (2003). A blocking algorithm starts with an initial
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test tube of potential solutions given by single-stranded DNA molecules, to
which a set of complementary falsifying DNA (blockers) is added. A library
molecule not representing a solution will hybridize with a blocker to form
a perfect double-stranded DNA molecule, while a library molecule corre-
sponding to a solution will remain single-stranded or form a double-stranded
molecule with mismatched base pairs, depending on encoding and experi-
mental conditions.

Consider an instance of the satisfiability problem. For this, let F be a
Boolean expression in n variables given in CNF such as

F = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3 + x4)(x2 + x3 + x4) .

Each truth assignment of the variables gives rise to a string x = a1 . . . an

over the alphabet Σ = {0, 1}, where the value of ai = 1 (ai = 0) assigns
“true” (“false”) to the variable xi, 1 ≤ i ≤ n. The truth values are encoded
by single DNA strands. In this way, each truth assignment is encoded by a
single DNA strand, too. For instance, if “true” and “false” are given by the
respective sequences 5’-GTCTGA-3’ and 5’-ATCACC-3’, the truth assignment
1010 is represented by the single DNA strand (with vertical bars indicating
the substrands)

5′ − GTCTGA|ATCACC|GTCTGA|ATCACC− 3′ .

A Boolean expression in CNF is falsified if and only if one clause is falsified.
Therefore, the blockers are given by the single DNA strands complementary
to truth assignments falsifying a clause. For instance, the truth assignment
1010 falsifies the first clause in the above CNF and thus gives rise to the
blocker

3′ − CAGACT|TAGTGG|CAGACT|TAGTGG− 5′ .

An experimental challenge in implementing blocking algorithms is to sep-
arate perfectly matched molecules from partially mismatched ones. One
promising approach is based on PCR inhibition. For this, the blockers are
made of peptide nucleic acid (PNA), chemically similar to DNA or RNA
but not naturally occurring in any living species. PNA has a backbone of
N-(2-aminoethyl)-glycine units linked by peptide bonds, and the purine and
pyrimidine bases are linked to the backbone by methylene carbonyl bonds.
The melting temperature of PNA/DNA complexes is eventually higher than
that of DNA/DNA double helices. Thus, by carefully controlling the tempera-
ture in PCR, falsified molecules given by perfect double-stranded PNA/DNA
can be made unavailable for DNA polymerase, while the remaining molecules
are selectively amplified. Another approach is based on mutation detec-
tion using the enzyme CEL I, which leaves perfect double-stranded DNA
untouched and cleaves the remaining DNA. While experimental data for
the first approach are lacking, the second approach has shown promising
results.
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5.2.6 Surface-Based Filtering

Finally, two filtering models are addressed that are based on surface DNA
chemistry. The model of L. Smith and coworkers (2000) makes use of the
“mark and destroy” paradigm and was employed to solve an instance of
the satisfiability problem. In this model, single-stranded DNA molecules are
attached to a surface such as glass, gold or silicon, and the DNA molecules
are subject to the following operations:

• mark (T, B): Start with a test tube T and a Boolean expression B and
mark all strands in T which satisfy B.

• unmark (T ): Consider a test tube T and unmark all marked strands in T .
• delete (T, C): Take a test tube T and a condition C, marked or unmarked,

and remove all strands in T according to C.

The algorithm SatSurface1 provides a DNA algorithm for solving the
satisfiability problem. For this, let F be a Boolean expression in n variables
given in CNF such as

F = (x2 + x3)(x1 + x2 + x3)(x1 + x2) .

For each of the 2n combinations of truth values, a multitude of single-
stranded DNA molecules is designed and attached to the surface. In this
way, each solution of the SAT problem is represented as an individual set of
affixed strands. In the example, there are eight such strands as illustrated in
Table 5.1.

For each disjunctive clause c in the expression F , the truth combinations
that satisfy the clause c are marked. For instance, in terms of the clause
x2 +x3, the strands s1, s3, s4, s5, s7, and s8 are marked, while the strands s2

and s6 are not. After this, the unmarked strands are deleted and the marked
strands are unmarked. As the expression F is in CNF, it evaluates to “true”
if and only if the final test tube is non-empty.

Algorithm 5.9 SatSurface1(T, F )
Input: input tube T , CNF F
1: for each disjunctive clause c in F do
2: mark (T, c)
3: delete (T, unmarked)
4: unmark (T )
5: end for
6: return detect (T )

The mark operation is implemented by adding to the test tube an excess of
strands that are Watson-Crick complementary to the satisfied single strands.
These satisfied strands will form double-stranded molecules and thus will
be subsequently protected from deletion. The delete operation employs an
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Table 5.1 Encoding of truth assignment in SatSurface1.

Strand Sequence x1x2x3

s1 5′ − CAACAACAA − 3′ 000
s2 5′ − TAATAATAA − 3′ 001
s3 5′ − AGGAGGAGG − 3′ 010
s4 5′ − CGGCGGCGG − 3′ 011
s5 5′ − CAAAGAAAC − 3′ 100
s6 5′ − TGGGTGGGT − 3′ 101
s7 5′ − TCCCTCCCT − 3′ 110
s8 5′ − AAATAAATA − 3′ 111

E. coli exonuclease I to cleave phosphodiester bonds in the 3’ to 5’ direc-
tion of the remaining single-stranded DNA molecules. In the example, the
single-stranded molecules corresponding to the strands s2 and s6 are digested.
Finally, the unmark operation denaturates the double-stranded molecules and
filters out the strands added in the first step. This leaves only immobilized
single-stranded molecules which satisfy the clause.

Another surface-based filtering model devised by Y. Sakakibara and A.
Suyama (2000) can be used to design so-called universal DNA chips. For
this, let F be a Boolean expression in n variables given in disjunctive normal
form (DNF) (i.e., F is a disjunction of conjunctions (clauses) of literals),
such as

F = x1x2 + x3x4 .

Each variable is encoded by a single-stranded DNA molecule of fixed length
and its negation is encoded by the corresponding Watson-Crick comple-
ment. Each conjunctive clause of F is encoded by the sequence of occur-
ring literals, and this strand is prefixed by a marker sequence. The whole
Boolean expression F is encoded by the sequence of conjunctive clauses,
and the clauses are separated by stopper sequences (Fig. 5.6). These DNA
molecules can be affixed to a surface and are subject to the following
operation:

• mark (T, F, b): Pick a test tube T , a Boolean expression F in DNF, a
truth assignment b, and add an excess of encoded DNA of the literals to
the test tube: If bi = 1 then add encoded DNA of xi, and if bi = 0 then
add encoded DNA of the Watson-Crick complement of xi.

The algorithm SatSurface2 provides a DNA algorithm for solving the
satisfiability problem. Notice that a conjunctive clause is satisfied by the
truth assignment if and only if the mark operation leaves the correspond-

marker x1 x2 stopper marker x3 x4

Fig. 5.6 Encoding of DNF expression F .
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marker x1 x2 stopper marker x3 x4

+

x1 x2 x3 x4

↓

marker x1 x2 stopper marker x3 x4

x3

↓

marker x1 x2 stopper marker x3 x4

← x3

Fig. 5.7 DNA computation for Boolean expression F with truth assignment b =
1011.

ing substrand single-stranded. Thus, if a conjunctive clause is not satisfied,
then the associated substrand is (partially) double-stranded. Then PCR will
extend this substrand and this extension will stop at the stopper sequence.
Consequently, the Boolean expression is satisfied by the truth assignment if
and only if at least one marker sequence is not double-stranded (Fig. 5.7).
These marker strands can be detected by adding complementary fluorescently
tagged markers to the solution. Then the intensity of fluorescence becomes
proportional to the satisfiability level of the Boolean expression.

Algorithm 5.10 SatSurface2(T, F, b)
Input: input tube T , DNF F , truth assignment b
1: mark (T, F, b)
2: pcr (T )
3: return detect (T )

In view of DNA chips, the Boolean variables are encoded by DNA words
termed DNA coded numbers (DCNs), which exhibit uniform melting temper-
ature and low mishybridization or self-folding potential. An mRNA transcript
(or the corresponding complementary DNA) can be converted to a DCN by
using template sequences that hybridize with both the mRNA transcript and
the DCN. By changing the set of template sequences, the set of mRNAs
detected by the chip can be changed. In this sense, the chip is considered to
be universal.
A universal DNA chip allows the development of an intelligent DNA chip
which can process rules for molecular diagnosis such as the following:
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If gene A is not expressed and gene B is expressed, then there is a
danger of disease C.

The condition in this rule can be represented by a Boolean expression
in DNF as described above so that an expressed gene is associated with a
DCN and an unexpressed gene corresponds to the Watson-Crick complement
of a DCN. An advantage of intelligent DNA chips is that the intensity of
fluorescence is proportional to the expression level of the genes and also
proportional to the satisfiability level of the condition.

5.3 Sticker Systems

The sticker system model introduced by L. Adleman and coworkers (1996)
is one of the most popular non-autonomous DNA models. It belongs to the
class of filtering models and can be viewed as an implementation of a register
machine.

5.3.1 Sticker Machines

This section describes the basic structure of sticker machines.

Sticker Memory

The sticker system model has a random access memory which requires no
strand extension. The memory of the sticker system model consists of so-
called memory complexes. A memory complex is a DNA strand that is
partially double-stranded and can be viewed as an encoding of an n bit
number. Each memory complex is formed by two basic types of single-
stranded DNA molecules, referred to as memory strands and sticker strands.
A memory strand is a single-stranded DNA molecule consisting of l nt in
length. A memory strand contains n non-overlapping substrands, each of
which has m nt so that l = mn. As an example, consider the following
memory strand for n = 4 and m = 6 (with vertical bars indicating the
substrands):

5′ − AAAAAA|TTTTTT|GGGAAA|CCCTTT− 3′ .
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Each sticker strand is m bases long. As an example, consider the following
sticker strands for m = 6:

3′ − AAAAAA− 5′, 3′ − CCCTTT− 5′, 3′ − GGGAAA− 5′ .

Each sticker strand is required to be complementary to exactly one of
the n substrands in a memory strand. For this, the substrands of a memory
strand should differ with respect to several base positions. Each substrand of
a memory strand will be identified with one bit position. If a sticker strand
is annealed to its matched substrand on a memory strand, the particular
substrand is on; otherwise, it is off. In this way, memory complexes can
represent binary numbers, where a substrand being on represents bit 1 and
a substrand being off represents bit 0.

Example 5.6. Consider the following memory complexes:

5’-AAAAAA|TTTTTT|GGGAAA|CCCTTT-3’

5’-AAAAAA|TTTTTT|GGGAAA|CCCTTT-3’
TTTTTT CCCTTT

5’-AAAAAA|TTTTTT|GGGAAA|CCCTTT-3’
AAAAAA|CCCTTT|GGGAAA

The encoded 4-bit strings are in turn 0000, 1010, and 0111. ♦

Sticker Operations

There are basically five operations in the sticker system model:

• merge (T1, . . . , Tn): Take test tubes T1, . . . , Tn, produce their union T1 ∪
. . . ∪ Tn, and put the result into the (possibly empty) test tube Tn.

• separate (T, T +, T−, i): Consider a test tube T and an integer i and create
two new tubes T + and T−, where T + consists of all memory complexes in
T in which the ith substrand is on, while T− is comprised of all memory
complexes in T in which the ith substrand is off.

• set (T, i): Start with a test tube T and an integer i and generate a
test tube in which the ith substrand of each memory complex in T is
turned on.

• clear (T, i): Pick a test tube T and an integer i and produce a test tube
in which the ith substrand of each memory complex in T is turned off.

• discard (T ): Take a test tube T and empty its contents.

The operation merge is implemented by simply pouring the contents of
several test tubes into a new one. However, if DNA is not gently handled,
it may be fragmented by shear forces into smaller pieces. Moreover, DNA
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molecules may remain stuck to the walls of a tube and thus become eventually
lost.

The operation separate divides the contents of a test tube into two test
tubes depending on the ith substrand. For this, oligonucleotide probes can
be designed that are complementary to the ith substrand and are attached
to the tube’s wall. Then the memory complexes in which the ith substrand is
off will probably anneal to such probes. The probes must have lower binding
affinity than the sticker strands so that the annealed memory complexes can
be recovered from the probes without losing the stickers.

The operation set can be implemented by adding an excess amount of
sticker strands to the test tube and letting them hybridize with the mem-
ory complexes. In order to remove unused sticker strands, a universal region
can be added to each memory strand so that no sticker can anneal to this
region.

The operation clear is the most problematic one, since melting does not
work because the sticker strands in all memory complexes will fall off. How-
ever, this operation can be eliminated without sacrificing the computational
completeness of the sticker system model. Indeed, instead of clearing the
ith substrand, an unused substrand can be set in an extended memory
complex.

Sticker Computations

A sticker computation consists of a finite sequence of sticker operations. The
input of a sticker computation is a test tube called initial test tube, while
the output is a sequence of test tubes called final test tubes. The output of
a final test tube is read in the sense that each of its memory complexes is
analyzed by isolating the annealed stickers, or it is reported that it contains
no memory complexes. Many sticker algorithms require additional test tubes,
which are considered to be empty at the beginning of a computation.

Sticker Machine

A sticker machine may be thought of as a robotic workstation that con-
sists of some robotics (arms, pumps, heaters, coolers), a microprocessor that
controls the robotics, and a series of test tubes: data tubes that hold mem-
ory complexes, sticker tubes each of which containing particular stickers, and
separation operator tubes that hold probes for a particular substrand. The
microprocessor controls the robotics and test tubes so that the operations of
a sticker program can be sequentially executed. The complexity of a sticker
algorithm is counted by the total number of sticker operations. The costs
necessary to generate an initial test tube and to read the final test tubes are
ignored.
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5.3.2 Combinatorial Libraries

Each DNA filtering algorithm uses as input an initial test tube contain-
ing candidate solutions. Such a test tube is also termed a combinatorial
library. The search for candidate solutions during a filtering computation can
be reduced by using an initial test tube that contains fewer combinatorial
types.

A basic type is the Pascal library introduced by K.-H. Zimmermann (2002).
For this, let k and n be positive integers. A string x = a1 . . . ak over the
alphabet {1, . . . , n} of length k is called a k-combination of n if x is strictly
increasing (i.e., a1 < a2 < . . . < ak). For instance, the 2-combinations of 4
are 12, 13, 14, 23, 24 and 34. The number of k-combinations of n is denoted
by

(
n
k

)
, called a binomial number. In particular,

(
n
k

)
= 0, if k > n,

(
n
0

)
= 1,(

n
n

)
= 1 and

(
n
1

)
= n. Moreover, if 1 ≤ k ≤ n then

(
n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
. (5.3)

Each k-combination x = a1a2 . . . ak of n describes a k-subset f(x) =
{a1, a2, . . . , ak} of {1, . . . , n}. The assignment f : x �→ f(x) provides a
bijection between the set of all k-combinations of n and the set of all k-
subsets of {1, . . . , n}. If we denote the set of all k-subsets of {1, . . . , n} by

(
n
k

)
,

then
(

n

k

)
=

∣∣∣∣

(
n

k

)∣∣∣∣ . (5.4)

Let n ≥ k and m ≥ 0. An [n + m,
(
n
k

)
] library is a test tube given by a

multiset of DNA molecules encoding as n+m bit numbers all k-combinations
of n so that the last m symbols are 0. For instance, a [7,

(
4
3

)
] library is given

by a multiset of strings 1110|000, 1101|000, 1011|000, and 0111|000, where
vertical bars indicate the substrings.

A combinatorial [n+m,
(
n
k

)
] library can be fabricated inductively by mak-

ing use of Eq. (5.3). That means, given an [n + m,
(
n−1

k

)
] library and an

[n + m,
(
n−1
k−1

)
] library. First, an appropriate number of stickers is added to

the latter library for the nth bit and then both libraries are merged to provide
an [n + m,

(
n
k

)
] library.

5.3.3 Useful Subroutines

In the following, let G = (V, E) be a graph with vertex set V = {v1, . . . , vn}
and edge set E = {e1, . . . , em}. The ith edge is denoted by ei = vi1vi2 ,
1 ≤ i ≤ m. It is assumed that there is a sticker machine whose microprocessor
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has a description of the graph G. In this way, the graph itself need not
be specified by memory complexes. Some useful procedures introduced by
K.-H. Zimmermann (2002) and I. Martinéz-Pérez (2007) will be described
first, which serve as building blocks for the construction of more complex
sticker algorithms. All algorithms presented were validated by the Java-based
StickerSim library written by O. Scharrenberg (2007).

Edge-Induced Graphs

The algorithm EdgeInducedGraphs provides all subgraphs of a graph G
that are induced from the k-subsets of edges, where 1 ≤ k ≤ m. The input
of the algorithm is an [m + n,

(
m
k

)
] library T , providing the encoded DNA

of all k-subsets of edges. The algorithm operates in a bit-vertical fashion
as it considers in parallel the ith substrands of the memory complexes. For
those memory complexes whose ith substrand is on, the edge ei occurs in
the corresponding k-set of edges. If the ith substrand is on, the substrands
m + i1 and m + i2 are turned on, indicating the vertices of the edge ei.
In the final test tube, the memory complexes correspond to the subgraphs
of G, which are induced from the k-sets of edges. The algorithm requires
4m steps.

Example 5.7. In view of the graph in Figure 5.8 and the library T with k = 2,
the algorithm yields the memory complexes in Table 5.2. ♦

Algorithm 5.11 EdgeInducedGraphs(T, m, n)
Input: [m + n,

(
m
k

)
] library T

1: for i← 1 to m do
2: separate (T, T+, T−, i)
3: set (T+, m + i1)
4: set (T+, m + i2)
5: merge (T+, T−, T )
6: end for
7: return T

Fig. 5.8 A graph G.
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Table 5.2 Final test tube of EdgeInducedGraphs.

e1 e2 e3 e4 v1 v2 v3 v4

1 1 0 0 1 1 1 0
1 0 1 0 1 1 1 0
1 0 0 1 1 1 1 1
0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1
0 0 1 1 0 1 1 1

Weightening

The algorithm Weightening extracts from an input test tube T0 those
memory complexes in which exactly k of the substrands m+1, . . . , m+n are
turned on, where 0 ≤ k ≤ n. At the end of the loop (1–7), the test tube Ti,
0 ≤ i ≤ n, contains all memory complexes in which exactly i of the substrands
m + 1, . . . , m + n are turned on. Thus the test tube Tk provides the output
of the algorithm. The sticker algorithm requires 2nn+1

2 = n2 + n steps. The
test tubes Tk+1, . . . , Tn are not required, so that the second statement can
be altered as follows:

2: for j ← min{i, k} down to 0 do .

This algorithm needs 2(1 + 2 + . . . + k + (n− k)(k + 1)) = 2n(k + 1)− k2− k
steps.

Example 5.8. Consider an input test tube T0 providing encoded DNA of the
memory complexes 00000, 10101, 01111, and 11010. The computation of
Weightening for m = 0 and n = 5 is shown in Table 5.3. ♦

Algorithm 5.12 Weightening(T0, m, n, k)

Input: input test tube T0
1: for i← 0 to n− 1 do
2: for j ← i down to 0 do
3: separate (Tj , T+, T−, m + i + 1)
4: merge (T+, Tj+1)
5: merge (T−, Tj)
6: end for
7: end for
8: return Tk
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Table 5.3 Computation of Weightening.

T0 T1 T2 T3 T4 T5

initial 00000
10101
01111
11010

i=1 00000 10101
sep. on 1 01111 11010
i=2 00000 10101 11010
sep. on 2 01111
i=3 00000 11010

10101
sep. on 3 01111
i=4 00000 10101 11010
sep. on 4 01111
i=5 00000 11010 01111
sep. on 5 10101

Complement

The algorithm Complement yields the complements of all k-subsets of ver-
tices in a graph G = (V, E), where 1 ≤ k ≤ n. That is, for each k-subset S of
V , the algorithm finds the complementary subset S in V . The input of the
algorithm is a [2n,

(
n
k

)
] library T , providing encoded DNA of all k-subsets of

vertices. The algorithm turns on substrand i+n for those memory complexes
whose ith substrand is turned off. As a result, the complement of a subset of
V given by the first n substrands is composed of the last n substrands. The
algorithm requires 3n steps.

Example 5.9. Given an initial test tube T with n = 4 and k = 2, the output
of the algorithm Complement is illustrated in Table 5.4. ♦

Algorithm 5.13 Complement(T, n)
Input: [2n,

(
n
k

)
] library T

1: for i← 1 to n do
2: separate (T, T+, T−, i)
3: set (T−, i + n)
4: merge (T+, T−, T )
5: end for
6: return T
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Table 5.4 Final test tube of Complement.

n1 n2 n3 n4 c1 c2 c3 c4

1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0

Algorithm 5.14 VertexInducedGraphs(T, m, n)
Input: [n + m,

(
n
k

)
] library T

1: for i← 1 to m do
2: separate (T, T+, T−, i1)
3: separate (T+, T++, T+−, i2)
4: set (T++, n + i)
5: merge (T−, T+−, T++, T )
6: end for
7: return T

Vertex-Induced Graphs

The algorithm VertexInducedGraphs yields all subgraphs of a graph G
that are induced by the k-subsets of vertices, where 1 ≤ k ≤ n. The input
of the algorithm is an [n + m,

(
n
k

)
] library T , which provides encoded DNA

of all k-subsets of vertices. The algorithm loops over all edges in G. In terms
of the edge ei = vi1vi2 , if a k-set has both the i1th and the i2th substrands
turned on, the corresponding memory complex finds its way into the tube
T ++, and the strand n + i encoding the edge ei is turned on. The algorithm
requires 4m steps.

Example 5.10. Given the graph in Figure 5.8 and the initial test tube T with
k = 3, the algorithm produces the final test tube shown in Table 5.5. ♦

Table 5.5 Final test tube of VertexInducedGraphs.

v1 v2 v3 v4 e1 e2 e3 e4

1 1 1 0 1 1 1 0
1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 1
0 1 1 1 0 0 1 1
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Algorithm 5.15 SpanningTrees(T, m, n)
Input: [n + m,

(
m

n−1

)
] library T

1: T ← EdgeInducedGraphs (T, m, n)
2: for i← 1 to n do
3: separate (T, T+, T−, m + i)
4: T ← T+

5: end for
6: return T

Spanning Trees

The algorithm SpanningTrees provides all spanning trees of a graph G. It
makes use of an [m + n,

(
m

n−1

)
] library T , which provides encoded DNA of

all n− 1-subsets of edges. This library is used by EdgeInducedGraphs to
compute all induced subgraphs. If the vertex vi belongs to such an induced
subgraph, the substrand m+i in the corresponding memory complex is turned
on. The memory complexes with the substrand m + i turned off are removed
step by step from the test tube, leaving at the end the memory complexes in
which the substrands m+1, . . . , m+n are turned on. By Theorem 2.18, these
complexes correspond one-to-one to the spanning trees of G. The algorithm
requires 4m + n steps.

Example 5.11. Given the graph in Figure 5.8, EdgeInducedGraphs yields
the memory complexes illustrated in Table 5.6. The last three memory com-
plexes correspond to the spanning trees of the graph and end up in the final
test tube of SpanningTrees (Fig. 5.9). ♦

Incidence Relation

The algorithm IncidenceRelation provides the incidence relation between
vertices and edges in a graph G. The input of the algorithm is an [m+n,

(
n
k

)
]

library T , providing encoded DNA of all k-subsets of vertices, where 1 ≤ k ≤
n. Two additional parameters are introduced, a lower (l) and upper (u) bound
on the set of substrands of size n, where 1 ≤ l < u ≤ n. For those memory

Table 5.6 Test tube after EdgeInducedGraphs in SpanningTrees.

e1 e2 e3 e4 v1 v2 v3 v4

1 1 1 0 1 1 1 0
1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1
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Fig. 5.9 The spanning trees of graph G.

complexes whose ith substrand is turned on, l ≤ i ≤ u, the algorithm verifies
in parallel if the vertex-edge pair (vi, ej) is incident and if so, turns on the
u+jth substrand corresponding to the incident edge (statements 4–5). At the
end of the loop, the strands composed of the last m substrands provide the
incidence pairs (vi, ej) between vertices and edges. The algorithm requires
n(m + 2) steps.

Algorithm 5.16 IncidenceRelation(T, l, u, m, n)
Input: [m + n,

(
n
k

)
] library T , 1 ≤ l < u ≤ n

1: for i← l to u do
2: separate (T, T+, T−, i)
3: for j ← 1 to m do
4: if incident (i, j) then
5: set (T+, u + j)
6: end if
7: end for
8: merge (T+, T−, T )
9: end for

10: return T

Example 5.12. Given the graph G in Figure 5.8 and the library T with n =
u = 4, l = 1, and k = 2, the output of the algorithm is given in Table 5.7.
The table indicates that in the first memory complex, the incident edges of
v1 and v2 are e1, e2, and e3, because v1 is incident with e1 and e2, and v2 is
incident with e1 and e3. ♦

Table 5.7 Final test tube of IncidenceRelation.

v1 v2 v3 v4 e1 e2 e3 e4

1 1 0 0 1 1 1 0
1 0 1 0 1 1 1 1
1 0 0 1 1 1 0 1
0 1 1 0 1 1 1 1
0 1 0 1 1 0 1 1
0 0 1 1 0 1 1 1
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Independent Subsets

The algorithm IndependentSubsets constructs an independent set in each
subgraph with k vertices of a graph. The input of the algorithm is a [2n,

(
n
k

)
]

library T , providing encoded DNA of all k-subsets of vertices of G with
1 ≤ k ≤ n. Moreover, lower (l) and upper (u) bounds on the set of substrands
of size n are given, where 1 ≤ l < u ≤ n. The algorithm verifies whether the
vertices vi and vj are adjacent, l ≤ i < j ≤ u. If so, the jth substrand is
cleared and the (u+1)+(j−l)th substrand is set (i.e., the vertex vj is removed
from the k-subset and stored in the second set of substrands of size n). At
the end of the algorithm, the first n strands of each memory complex provide
an independent subset of the initially given k-subset. The algorithm requires
n2 + 6n steps. Notice that the constructed independent subsets depend on
the ordering of the vertices.

Algorithm 5.17 IndependentSubsets(T, l, u, n)
Input: [2n,

(
n
k

)
] library T , 1 ≤ l < u ≤ n

1: for i← l to u− 1 do
2: for j ← i + 1 to u do
3: separate (T, T+, T−, i)
4: separate (T+, T++, T+−, j)
5: merge (T−, T+−, T )
6: if adjacent (vi, vj) then
7: set (T++, (u + 1) + (j − l))
8: clear (T++, j)
9: end if

10: merge (T++, T )
11: end for
12: end for
13: return T

Example 5.13. Given the graph G in Figure 5.8 and the library T with n =
u = 4, l = 1, and k = 3, the algorithm yields the output tube described in
Table 5.8. For instance, the second memory complex encodes the independent
subset {v1, v4} of the subgraph spanned by the vertex set {v1, v2, v4}. ♦

Table 5.8 Final test tube of IndependentSubsets.

v1 v2 v3 v4 v1 v2 v3 v4

1 1 0 0 1 1 1 0
1 0 1 0 1 1 1 1
1 0 0 1 1 1 0 1
0 1 1 0 1 1 1 1
0 1 0 1 1 0 1 1
0 0 1 1 0 1 1 1
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Mutually Disjoint Sets

The algorithm MutuallyDisjointSets verifies whether the vertex set of a
graph G is partitioned into two disjoint subsets. The input of the algorithm
is a [2n,

(
2n
k

)
] library T so that the first n substrands provide an encoding of

the k-subsets of V . Likewise, the second n substrands give another encoding
of subsets of V . The algorithm separates the library T into four tubes T ++,
T +−, T−+, and T−− each of which indicates the presence (+) or absence (−)
of vertices vi and vi+n, respectively. The next statement merges the tubes
that contain either vertex vi or vertex vi+n, while the tubes T ++ and T−−

are discarded. This algorithm requires 6n steps.

Algorithm 5.18 MutuallyDisjointSets(T, n)
Input: [2n,

(2n
k

)
] library T

1: for i← 1 to n do
2: separate (T, T+, T−, i)
3: separate (T+, T++, T+−, i + n)
4: separate (T−, T−+, T−−, i + n)
5: merge (T+−, T−+, T )
6: discard (T++)
7: discard (T−−)
8: end for
9: return T

Example 5.14. Assume that an already processed test tube T with n = 4
and k = 2 exhibits the contents given in Table 5.9. The algorithm eliminates
those memory complexes whose ith and i + nth substrands have the same
value and produces the output tube illustrated in Table 5.10. ♦
5.3.4 NP-Complete Problems

This section provides a collection of sticker algorithms for NP-complete
problems. One distinctive feature of these algorithms is that they solve

Table 5.9 Input test tube of MutuallyDisjointSets.

v1 v2 v3 v4 v1 v2 v3 v4

1 1 0 0 1 1 0 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1
0 0 1 1 1 1 0 0
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Table 5.10 Final test tube of MutuallyDisjointSets.

v1 v2 v3 v4 v1 v2 v3 v4

1 0 1 0 0 1 0 1

0 1 1 0 1 0 0 1

0 0 1 1 1 1 0 0

NP-complete problems in low polynomial time by shifting complexity into
space.

Set Covers

The power of sticker systems was first demonstrated by an algorithm solving
the problem of minimum set cover. Let {A1, . . . , Am} be a set of subsets of the
set A = {1, . . . , n}. The algorithm SetCovers provides all set covers of A
that consist of k elements. The input of the algorithm is an [m+n,

(
m
k

)
] library

T which provides encoded DNA of all k-element subsets of {A1, . . . , Am}. The
ith loop inspects the ith subset Ai, and if the ith strand is turned on, then
the elements of Ai are stored in the last n substrands. Thus, the set covers
are formed by memory complexes in which the last n strands are turned on.
These complexes are filtered out by Weightening. This sticker algorithm
needs m(2 +

∑
i |Ai|) + n2 + n steps. But

∑
i |Ai| ≤ mn and thus an upper

bound on the number of steps is m2n + n2 + 2m + n.

Example 5.15. Consider the subsets A1 = {1, 2}, A2 = {2, 3}, and A3 = {3, 4}
of the set A = {1, . . . , 4}, and let k = 2. The initial test tube T is illustrated in
Table 5.11. After the end of the loop, the tube holds the memory complexes
given in Table 5.12 and Weightening produces the tube in Table 5.13.
Hence, the 2-subset {A1, A3} forms a set cover of A. ♦

Algorithm 5.19 SetCovers(T, m, n, k)
Input: [m + n,

(
m
k

)
] library T

1: for i← 1 to m do
2: separate (T, T+, T−, i)
3: for each j ∈ Ai do
4: set (T+, m + j)
5: end for
6: merge (T+, T−, T )
7: end for
8: T ← Weightening (T, m, n, n)
9: if ¬empty (T ) then

10: return T
11: else
12: report “no k-set cover”
13: end if
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Table 5.11 Initial test tube of SetCovers.

A1 A2 A3 1 2 3 4

1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 1 0 0 0 0

Table 5.12 Test tube of SetCovers after the loop.

A1 A2 A3 1 2 3 4

1 1 0 1 1 1 0
1 0 1 1 1 1 1
0 1 1 0 1 1 1

Table 5.13 Final test tube of SetCovers.

A1 A2 A3 1 2 3 4

1 0 1 1 1 1 1

Vertex Covers

The algorithm VertexCovers determines whether a graph G exhibits a
vertex cover of size k. The input of the algorithm is an [m + n,

(
n
k

)
] library

T , providing encoded DNA of all k-subsets of vertices, where 1 ≤ k ≤ n.
The algorithm first constructs for each k-subset of vertices the set of incident
edges by using the procedure IncidenceRelation. These edges are stored
in the last m substrands of the memory complexes. Those memory com-
plexes in which all m substrands are turned on provide vertex covers. The
memory complexes with this property are filtered out by Weightening.
The algorithm requires m2 + mn + m + 2n steps. The minimum vertex cover
problem can be solved by invoking the algorithm for increasing parameters
k = 1, . . . , n (respectively input test tubes) until the corresponding output
test tube is non-empty.

Algorithm 5.20 VertexCovers(T, m, n, k)
Input: [m + n,

(
n
k

)
] library T

1: T ← IncidenceRelation (T, 1, n, m, n)
2: T ← Weightening (T, n, m, m)
3: if ¬empty (T ) then
4: return T
5: else
6: report “no k-vertex cover”
7: end if
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Table 5.14 Initial test tube of VertexCovers.

v1 v2 v3 v4 e1 e2 e3 e4

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0

Example 5.16. Consider the graph G in Figure 5.8 and take the library T
with k = 2 containing the memory complexes described in Table 5.14. Inci-

denceRelation produces the tube in Table 5.15, and Weightening gen-
erates the tube in Table 5.16. Thus {v1, v3} and {v2, v3} are vertex covers
of G. ♦

Cliques

The algorithm Cliques1 provides all cliques of size k in a graph G. The
input of the algorithm is an [n,

(
n
k

)
] library T , providing encoded DNA of all

k-subsets of vertices, where 1 ≤ k ≤ n. The algorithm first calculates the tube
T ++ containing those memory complexes in which the ith and jth substrands
are turned on. Then the algorithm checks whether the corresponding vertices
are adjacent. If not, the memory complexes are filtered out (statements 6–7).
This algorithm requires n2 + 5n steps.

Table 5.15 Test tube produced by IncidenceRelation in VertexCovers.

v1 v2 v3 v4 e1 e2 e3 e4

1 1 0 0 1 1 1 0
1 0 1 0 1 1 1 1
1 0 0 1 1 1 0 1
0 1 1 0 1 1 1 1
0 1 0 1 1 0 1 1
0 0 1 1 0 1 1 1

Table 5.16 Final test tube of VertexCovers.

v1 v2 v3 v4 e1 e2 e3 e4

1 0 1 0 1 1 1 1
0 1 1 0 1 1 1 1
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Algorithm 5.21 Cliques1(T, n, k)
Input: [n,

(
n
k

)
] library T

1: for i← 1 to n− 1 do
2: for j ← i + 1 to n do
3: separate (T, T+, T−, i)
4: separate (T+, T++, T+−, j)
5: merge (T−, T+−, T )
6: if adjacent (vi, vj) then
7: merge (T++, T )
8: end if
9: discard (T++)

10: end for
11: end for
12: if ¬empty (T ) then
13: return T
14: else
15: report “no k-clique”
16: end if

The maximum clique problem can be solved by invoking Cliques1 for
decreasing parameters k = n, n − 1, . . . (respectively input test tubes) until
the corresponding output test tube is non-empty.

Example 5.17. Consider the graph G in Figure 5.8 and the initial library T
with k = 3 providing the memory complexes in Table 5.17. The final tube
holds the memory strand in Table 5.18. Thus, the graph G contains a single
3-clique, given by {v1, v2, v3}. ♦

Here is another sticker algorithm for the clique problem. The input of the
algorithm is an [m + n,

(
m
(k
2)
)
] library T , providing encoded DNA of all k-

subsets of edges, where
(
k
2

) ≤ m. The algorithm determines which of these

Table 5.17 Initial test tube of Cliques1.

v1 v2 v3 v4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

Table 5.18 Final test tube of Cliques1.

v1 v2 v3 v4

1 1 1 0



154 5 Non-Autonomous DNA Models

k-sets form k-cliques. For this, it delivers all subgraphs of G induced by
the subsets of

(
k
2

)
edges. Among these subgraphs, those subgraphs are deter-

mined that contain k vertices. These are exactly the k-cliques. The algorithm
requires 4m + 2n(k + 1)− k2 − k steps.

Algorithm 5.22 Cliques2(T, m, n, k)
Input: [m + n,

(
m

(k

2)

)
] library T

1: T ← EdgeInducedGraphs (T, m, n)
2: T ← Weightening (T, m, n, k)
3: if ¬empty (T ) then
4: return T
5: else
6: report “no k-clique”
7: end if

Example 5.18. Consider the graph G in Figure 5.8 and the initial library T
with k = 3 giving rise to the memory complexes in Table 5.19. EdgeIn-

ducedGraphs yields the test tube in Table 5.20, and Weightening pro-
vides the memory strands shown in the first row. Thus, the graph contains
the single 3-clique {v1, v2, v3}. ♦

Independent Sets

The algorithm Cliques1 can be modified to yield the independent k-sets
in a given graph G. The input of the algorithm is an [n,

(
n
k

)
] library T ,

providing encoded DNA of all k-subsets of vertices, 1 ≤ k ≤ n. In the algo-
rithm Cliques1, line 6 is replaced as follows,

Table 5.19 Initial test tube of Cliques2.

e1 e2 e3 e4 v1 v2 v3 v4

1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0

Table 5.20 Test tube produced by EdgeInducedGraphs in Cliques2.

e1 e2 e3 e4 v1 v2 v3 v4

1 1 1 0 1 1 1 0
1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1
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6: if not (adjacent (vi, vj)) then .

Thus, the tube T ++ yields all memory complexes in which the ith and jth
vertex are not adjacent. If not, the memory complexes are filtered out. This
algorithm requires n2+5n steps. The maximum independent set problem can
be solved by invoking the algorithm for decreasing parameters k = n, n−1, . . .
until the first non-empty output test tube is encountered.

Example 5.19. Take the graph G in Figure 5.8 and the library T with k = 2.
The final test tube illustrated in Table. 5.21 delivers the independent 2-
subsets {v1, v4} and {v2, v4} of G. ♦

Here is another algorithm for the problem of independent sets. For this, the
input of the algorithm is an [n + m,

(
n
k

)
] library T , providing encoded DNA

of all k-subsets of vertices in a graph G, where 1 ≤ k ≤ n. The algorithm
determines which of the k-sets are independent. To this end, it computes
the subgraphs in G induced by the k-subsets of edges. This is implemented
by VertexInducedGraphs. Among these subgraphs, those subgraphs are
determined that contain no edges. This is implemented by Weightening.
The algorithm requires 4m + 2n steps.

Algorithm 5.23 IndependentSets(T, m, n, k)
Input: [m + n,

(
n
k

)
] library T

1: T ← VertexInducedGraphs (T, n, m)
2: T ← Weightening (T, n, m, 0)
3: if ¬empty (T ) then
4: return T
5: else
6: report “no k-independent set”
7: end if

Colorings

The algorithm 3-Colorings solves the 3-coloring problem in a graph G. The

input of the algorithm is an [n + 2n,

n/3�∑
i=1

(
n
i

)
] library T , providing encoded

Table 5.21 Final test tube of IndependentSets.

v1 v2 v3 v4

1 0 0 1
0 1 0 1
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DNA of all �n/3�-subsets of vertices. The algorithm decomposes the vertex set
of G into three disjoint independent subsets so that each subset can be given
a different color. First, IndependentSets filters out those �n/3�-subsets of
vertices that are independent. Second, Complement yields the complement
of each independent subset storing the complementary set in the second n
substrands. Third, IndependentSubsets constructs an independent subset
of the subgraphs spanned by those vertices that are given by the second n
substrands. Fourth, IndependentSets eliminates those memory complexes
in which vertices given by the third n substrands are adjacent. The algorithm
requires 3n2 + 15n steps.

Algorithm 5.24 3-Colorings(T, n)

Input: [n + 2n,
�n/3�∑

i=1

(
n
i

)
] library T

1: T ← IndependentSets (T, 1, n)
2: T ← Complement (T, n)
3: T ← IndependentSubsets (T, n + 1, 2n, n)
4: T ← IndependentSets (T, 2n + 1, 3n)
5: if ¬empty (T ) then
6: return T
7: else
8: report “no 3-colored subgraph”
9: end if

Example 5.20. Take the graph G in Figure 5.8 and consider the initial
test tube T in Table 5.22. IndependetSets leaves the tube invariant
and Complement yields the test tube in Table 5.23. After this, Inde-

pendentSubsets delivers independent subsets as described in Table 5.24.

Table 5.22 Initial test tube of 3-Colorings.

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

Table 5.23 Test tube after IndependentSets and Complement in 3-Colorings.

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

1 0 0 0 0 1 1 1 0 0 0 0
0 1 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0
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Table 5.24 Test tube after IndependentSubsets in 3-Colorings.

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

1 0 0 0 0 1 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0 0 1 1 0

Table 5.25 Final test tube of 3-Colorings.

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

1 0 0 0 0 1 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 0 1 0 0

Finally, IndependetSets yields the final test tube illustrated in Table 5.25.
For instance, the first memory complex in the final test tube encodes
a decomposition of the vertex set into three independent subsets: {v1},
{v2, v4}, and {v3}. ♦

Bipartite Subgraphs

The algorithm BipartiteSubgraphs determines whether a graph G has a k-
bipartite subgraph. The input of the algorithm is a [2n,

(
2n
k

)
] library T . Each

memory complex in T encodes two subsets of the vertices in G, the first and
second of which are given by the first and second n substrands, respectively.
Thus, each memory complex corresponds to a union of a k-subset of the vertex
set into two disjoint sets. First, both subsets of such a k-subset are subject
to IndependentSets, filtering out those subsets that are independent in
G. Second, memory complexes in which both subsets are independent in
G serve as input of MutuallyExclusiveSets, delivering those memory
complexes in which the independent subsets are disjoint. Hence, the final
memory complexes encode k-bipartite subgraphs of G. The algorithm requires
2n2 + 10n + 6n = 2n2 + 16n steps.

Algorithm 5.25 BipartiteSubgraphs(T, n, k)
Input: [2n,

(2n
k

)
] library T

1: T ← IndependentSets (T, 1, n)
2: T ← IndependentSets (T, n + 1, 2n)
3: T ← MutuallyDisjointSets (T, n)
4: if ¬empty (T ) then
5: return T
6: else
7: report “no k-bipartite subgraph”
8: end if
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Fig. 5.10 A bipartite
graph G. 
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Table 5.26 Initial test tube of BipartiteSubgraphs.

v1 v2 v3 v4 v1 v2 v3 v4

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 0 0 0 1 1 1 1
1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0

Example 5.21. Consider a test tube T with n = 4 and k = 4 holding
(
8
4

)

different types of memory complexes. To simplify the example, assume that
the test tube T consists of the memory complexes in Table 5.26. In terms of
the graph G in Figure 5.10, the first IndependentSets statement yields the
tube in Table 5.27, while the second IndependentSets statement provides
the tube in Table 5.28. Then MutuallyDisjointSets gives the final tube
illustrated in Table 5.29. Thus the graph G is a 4-bipartite graph with vertex
subsets {v1, v4} and {v2, v3}. ♦

Table 5.27 Test tube after first IndependentSets in BipartiteSubgraphs.

v1 v2 v3 v4 v1 v2 v3 v4

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 0 0 0 1 1 1 1

Table 5.28 Test tube after second IndependentSets in BipartiteSubgraphs.

v1 v2 v3 v4 v1 v2 v3 v4

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
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Table 5.29 Final test tube of Bipartite Subgraphs.

v1 v2 v3 v4 v1 v2 v3 v4

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1

Matchings

The algorithm Matchings solves the k-matching problem in a graph G. The
input of the algorithm is an [m+n,

(
m
k

)
] library T , providing encoded DNA of

all k-subsets of edges, where 1 ≤ k ≤ n/2. First, the induced subgraphs from
all k-subsets of edges are calculated. Such a subgraph yields a k-matching if
and only if it has 2k vertices. Thus, Weightening filters out those subgraphs
with 2k vertices. The algorithm requires 4m + 2n(2k + 1)− 4k2 − 2k steps.

Algorithm 5.26 Matchings(T, m, n, k)
Input: [m + n,

(
m
k

)
] library T

1: T ← EdgeInducedGraphs (T, m)
2: T ← Weightening (T, m, n, 2k)
3: if ¬empty (T ) then
4: return T
5: else
6: report “no k-matching”
7: end if

Example 5.22. Take the graph G in Figure 5.8 and consider the initial test
tube T with k = 2 given in Table 5.30. EdgeInducedGraphs yields the
memory complexes shown in Table 5.31, and Weightening provides the
final test tube illustrated in Table 5.32. Thus, the subgraph induced by the
edges e1 and e4 is the only 2-matching in G. ♦

Table 5.30 Initial test tube of Matchings.

e1 e2 e3 e4 v1 v2 v3 v4

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0



160 5 Non-Autonomous DNA Models

Table 5.31 Test tube after EdgeInducedGraphs in Matchings.

e1 e2 e3 e4 v1 v2 v3 v4

1 1 0 0 1 1 1 0
1 0 1 0 1 1 1 0
1 0 0 1 1 1 1 1
0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1
0 0 1 1 0 1 1 1

Table 5.32 Final test tube of Matchings.

e1 e2 e3 e4 v1 v2 v3 v4

1 0 0 1 1 1 1 1

Perfect Matchings

A small change in the Matchings algorithm solves the perfect matching
problem. Let n > 0 be an even integer. The input of the algorithm is an
[m + n,

(
m

n/2

)
] library T , providing encoded DNA of all n/2-subsets of edges.

In opposition to the Matchings algorithm, Weightening receives n as the
last parameter instead of 2k. The algorithm requires 4m+2n(n+1)−n2−n =
4m + n2 + n steps.

Algorithm 5.27 PerfectMatchings(T, m, n)
Input: [m + n,

( m
n/2

)
] library T

1: T ← EdgeInducedGraphs (T, m)
2: T ← Weightening (T, m, n, n)
3: if ¬empty (T ) then
4: return T
5: else
6: report “no perfect matching”
7: end if

Edge-Dominating Sets

The algorithm EdgeDominatingSets calculates all dominating edge sets
of size k in a graph G. The input of the algorithm is an [m + (n + m),

(
m
k

)
]

library T , providing encoded DNA of all k-subsets of edges, where 1 ≤ k ≤ m.
First, EdgeInducedGraphs provides the subgraphs in G, which are induced
by the k-subsets of edges. For this, the vertex set of such a subgraph is
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stored in the second set of substrands of size n. Second, IncidenceRelation

calculates the set of incident edges for the vertex set of such a subgraph.
These edges are stored in the third set of substrands of size m. Such a set
of incident edges is k-dominating in G if and only if it equals the edge set
in G. Therefore, Weightening filters out those memory complexes whose
m substrands on the third set are turned on. The algorithm requires 4m +
nm + 2n + 2m(m + 1)−m2 −m = n(m + 2) + m2 + m steps. The minimum
edge dominating k-set problem can be solved by invoking this algorithm for
increasing parameters k = 1, . . . , n (respectively input test tubes) until the
corresponding output test tube is non-empty.

Algorithm 5.28 EdgeDominatingSets(T, m, n, k)
Input: [m + (n + m),

(
m
k

)
] library T

1: T ← EdgeInducedGraphs (T, m)
2: T ← IncidenceRelation (T, m + 1, m + n, m, n)
3: T ← Weightening (T, m + n, m, m)
4: if ¬empty (T ) then
5: return T
6: else
7: report “no k-edge-dominating set”
8: end if

Example 5.23. Start with the initial test tube T with n = 4, m = 4, and
k = 1 described in Table 5.33. In terms of the graph G in Figure 5.8, EdgeIn-

ducedGraphs produces the tube in Table 5.34. Then IncidenceRelation

yields the tube in Table 5.35. Finally, Weightening gives the final test tube
in which the last m substrands are turned on as shown in Table 5.35. Thus,
{e2} and {e3} are 1-dominating edge sets in G. ♦

Table 5.33 Initial test tube of EdgeDominatingSets.

e1 e2 e3 e4 v1 v2 v3 v4 e1 e2 e3 e4

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

Table 5.34 Test tube after EdgeInducedGraphs in EdgeDominatingSets.

e1 e2 e3 e4 v1 v2 v3 v4 e1 e2 e3 e4

1 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0
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Table 5.35 Test tube after IncidenceRelation in EdgeDominatingSets.

e1 e2 e3 e4 v1 v2 v3 v4 e1 e2 e3 e4

1 0 0 0 1 1 0 0 1 1 1 0
0 1 0 0 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1
0 0 0 1 0 0 1 1 0 1 1 1

Table 5.36 Final test tube of EdgeDominatingSets.

e1 e2 e3 e4 v1 v2 v3 v4 e1 e2 e3 e4

0 1 0 0 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1

Hamiltonian Paths

The sticker algorithm HamiltonianPaths determines all Hamiltonian paths
in a graph. The input of the algorithm is an [m + 2n,

(
m

n−1

)
] library T , pro-

viding encoded DNA of all n− 1-subsets of the edge set, where n ≤ m + 1.
The algorithm determines which of these sets form Hamiltonian paths. To do
this, it proceeds in the following steps:

• The induced subgraphs from the n − 1-sets of edges are calculated by
EdgeInducedGraphs.

• The spanning trees of the graph are computed by SpanningTrees.
• For each spanning tree, the degree modulo 2 of each vertex is computed

(statements 3-11).
• The spanning trees whose (unordered) degree sequence taken modulo 2

contains two entries 1 and n−2 entries 0 are determined by Weightening.
• The return test tube of Weightening is the output of the algorithm.

The algorithm requires 4m + 4m + n + 8m + 6n− 6 = 16m + 6n− 6 steps.
The algorithm yields all Hamiltonian paths in a graph G. To see this,

observe that statement 2 yields all spanning trees of the graph.
Claim that a spanning tree is a Hamiltonian path if and only if its degree

sequence taken modulo 2 has two ones and n − 2 zeros (i.e., the sequence
is of the form 0 . . . 010 . . .010 . . .0). Indeed, it is clear that each Hamilto-
nian path has such a degree sequence taken modulo 2. Conversely, consider
a spanning tree T whose degree sequence taken modulo 2 is of the form
0 . . . 010 . . .010 . . .0. As each tree has at least two vertices of degree one,
it follows that the two ones in the degree sequence stem from the vertices
of degree one. All other vertices of T have even degree (greater than zero
as the graph is connected). But by Theorem 2.18, a tree with n vertices
has n − 1 edges and thus in view of the Handshaking Lemma, the sum of
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Algorithm 5.29 HamiltonianPaths(T, m, n)
Input: [m + 2n,

(
m

n−1

)
] library T

1: T ← EdgeInducedGraphs (T, m, n)
2: T ← SpanningTrees (T, m, n)
3: for i← 1 to m do
4: separate (T, T+, T−, i)
5: for j ← 1 to 2 do
6: separate (T+, T++, T+−, m + n + ij)
7: set (T+−, m + n + ij)
8: clear (T++, m + n + ij)
9: end for

10: merge (T−, T++, T+−, T )
11: end for
12: T ← Weightening (T, m + n, n, 2)
13: if ¬empty (T ) then
14: return T
15: else
16: report “no Hamiltonian path”
17: end if

degrees of all vertices in T equals 2(n−1). Thus, each of the n−2 vertices of
even degree must have degree 2. Hence, T has (unordered) degree sequence
2 . . . 212 . . .212 . . .2.

Finally, assume that we are travelling along the edges of the spanning
tree T as a travelling salesman would do. For this, we start at one of the
two vertices of degree one, say vi1 , and move in T to the unique adjacent
vertex, say vi2 . This vertex may also have degree one. But if n > 2, then
the spanning tree would decompose into two components, the first of which
is given by the edge vi1vi2 and the second of which is defined by a simple
cycle of the remaining vertices. In view of the degrees, these subgraphs would
have no vertex in common, contradicting the hypothesis that the subgraph
T is connected. By proceeding in this way, we see that the spanning tree T
forms a Hamiltonian path. This proves the claim, and the correctness of the
algorithm follows.

Example 5.24. Given the graph in Figure 5.8 and the corresponding spanning
trees in Figure 5.9, HamiltonianPaths yields the memory complexes in
Table 5.37, where the last four substrands indicate the degrees modulo 2 of
the vertices. It follows that the first two memory complexes correspond to
Hamiltonian paths. ♦

Hamiltonian Cycles

The sticker algorithm HamiltonianCycles determines all Hamiltonian
cycles in a graph. The Hamiltonian cycles are formed exactly by those Hamil-
tonian paths, whose ending vertices are adjacent. Therefore, we may first
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Table 5.37 Final test tube of HamiltonianPaths.

e1 e2 e3 e4 v1 v2 v3 v4 d(v1)2 d(v2)2 d(v3)2 d(v4)2

1 1 0 1 1 1 1 1 0 1 0 1
1 0 1 1 1 1 1 1 1 0 0 1
0 1 1 1 1 1 1 1 1 1 1 1

employ the algorithm HamiltonianPaths to calculate all Hamiltonian paths
in the graph. The Hamiltonian paths correspond to those memory complexes
of length m + 2n whose last n substrands contain two entries 1 and n − 2
entries 0. The two non-zero entries specify the vertices of degree 1 in the
Hamiltonian path. If these two non-zero entries are given by the substrands
m + n + i1 and m + n + i2, with 1 ≤ i1, i2 ≤ n, then a corresponding Hamil-
tonian cycle exists if and only if the graph contains the edge ei = vi1vi2 .
For each edge in the graph, all Hamiltonian paths are checked in parallel to
determine whether this condition is fulfilled. The initially empty test tube T1

contains the Hamiltonian cycles determined so far. The algorithm requires
16m + 6n− 6 + 4m = 20m + 6n− 6 steps.

Algorithm 5.30 HamiltonianCycles(T, m, n)
Input: [m + 2n,

(
m

n−1

)
] library T , test tube T1 initially empty

1: T ← HamiltonianPaths (T, m, n)
2: for i← 1 to m do
3: separate (T, T+, T−, m + n + i1)
4: separate (T+, T++, T+−, m + n + i2)
5: merge (T++, T1)
6: merge (T−, T+−, T )
7: end for
8: if ¬empty (T1) then
9: return T1

10: else
11: report “no Hamiltonian cycle”
12: end if

For instance, the graph in Figure 5.8 has no Hamiltonian cycle since none
of its Hamiltonian paths can be closed to a cycle.

Steiner Trees

Finally, sticker algorithms for two Steiner tree problems are provided. For
this, let Z be a subset of the vertex set of a connected graph G. The first
problem is to determine all Steiner trees H = (U, F ) for Z in G so that F
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is a k-subset of the edge set. For this, we relabel the vertices in G so that
Z = {v1, . . . , v�}. The input of the algorithm is an [m + n,

(
m
k

)
] library T ,

providing encoded DNA of all k-subsets of edges in G, where 1 ≤ k ≤ m.
The algorithm proceeds in the following steps:

• The induced subgraphs from the k-subsets of edges are calculated.
• Those induced subgraphs are determined that have k + 1 vertices (state-

ments 2–5). These subgraphs are minimally connected and thus form sub-
trees in G.

• Those subgraphs are extracted that contain all vertices in Z (statements
6–9).

• The test tube T provides the output of the algorithm.

The algorithm requires 4m + 2n + 2� steps.

Algorithm 5.31 SteinerTrees(T, m, n, �, k)
Input: [m + n,

(
m
k

)
] library T – first problem

1: T ← EdgeInducedGraphs (T, m, n)
2: for i← 1 to n do
3: separate (T, T+, T−, m + i)
4: T ← T+

5: end for
6: for i← 1 to � do
7: separate (T, T+, T−, m + i)
8: T ← T+

9: end for
10: if ¬empty (T ) then
11: return T
12: else
13: report “no k-Steiner tree”
14: end if

The second problem is to determine all Steiner trees H = (U, F ) for Z in G
so that U\Z is a k-set. This problem can be solved in the same way as the first
problem. The input of the algorithm is an [m+n,

(
m

k+�−1

)
] library T , providing

encoded DNA of all k + �− 1-subsets of edges in G, where 1 ≤ k + l− 1 ≤ m.
Those induced subgraphs that have k + � vertices are minimally connected
and thus form subtrees in G. Those subtrees that contain all vertices in Z
provide the solution. Therefore, the algorithm SteinerTrees applied to the
above input test tube solves the second problem.

Limitation of DNA Algorithms

There are more errors than just the stickers binding in the wrong places.
DNA strands are flexible and will fold back on themselves, thereby form-
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ing secondary structures. This will make regions in a memory strand inac-
cessible for proper use. This problem can be avoided by composing mem-
ory strands of only pyrimidines and sticker strands only of purines, or
vice versa.

DNA algorithms in general are limited by several key factors. A first limit-
ing factor is the length of the memory complexes: oligonucleotides longer than
15,000 nt might be fragmented by the shear forces of pouring and mixing the
test tubes. A reasonable problem size for sticker algrithms is l = 12, 000 nt
for memory strands and m = 20 nt for sticker strands. This will allow the
representation of binary numbers of length n = 600 bits.

A second limiting factor is the speed of the DNA operations. For instance,
separated complementary strands of purified DNA recognize each other as a
result of collisions. Under appropriate conditions, they specifically reassociate
or anneal to a double-stranded molecule. Reassociation can be measured by
the C0t parameter (pronouced “cot”) introduced by R. Britten et al. in the
1960s. The DNA of each organism may be characterized by the value of
C0t at which the reassociation reaction is half completed under controlled
conditions. A C0t of 1 mole of nucleotides times seconds per liter results if
DNA is incubated for 1 hour at a concentration of 83 μg/ml. The C0t values
range over several orders of magnitude depending on the type (genome) of
the DNA.

A third limiting factor comes from the fact that DNA operations are error
prone. The most erroneous sticker operation is separate. Consider a sticker
algorithm with S separate operations, with the other operations being negligi-
ble. Assume that each separate operation takes one unit of time to complete,
no strands are physically lost during the separation process, and there is a
common probability p of correctly processing each complex, which is assumed
to be near unity. The computation will then take S units of time and the frac-
tion of complexes not correctly processed will be depressingly high δ = 1−pS.
For instance, if p = 0.9 and S = 100 then δ = 0.99997.

There are techniques to make the fraction δ smaller using intelligent
space and time trade-offs. This requires no changes of the quantities p
and S. Each separate operation can be repeated M times. This time slow-
down improves the error fraction δ from 1 − pS to (1 − pS)M . In addition,
each separate operation can be performed on H = 2N + 1 test tubes Ti,
−N ≤ i ≤ N . This compound separate operation, implemented by the
algorithm CompoundSeparate, requires that the test tubes are organized
so that if no error is committed, the memory complexes with ith bit on
located in test tube Tj move into test tube Tj+1, while those with ith bit
off move into test tube Tj−1, with absorption at the boundary tubes. In this
way, the memory complexes perform a biased random walk in tubes T−N

through TN so that most memory complexes with ith bit on will end up
in TN , while most memory complexes with ith bit off will end up in T−N .
This process resembles the gambler’s ruin problem studied in quantitative
finance.
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Algorithm 5.32 CompoundSeparate(T, N, Q, k)
Input: tube T = T0, extra tubes T−N , . . . , T−1 and T1, . . . , TN initially empty,

integers k ≥ 0 and Q ≥ 1
1: for i← 1 to Q do
2: for j ← −N + 1 to N − 1 do
3: if i + j ≡ 1 mod 2 then
4: separate (Tj , T+, T−, k)
5: merge (T+, Tj+1)
6: merge (T−, Tj−1)
7: end if
8: end for
9: end for

Theorem 5.25. Consider a gambler who wins or loses a dollar with proba-
bilities p and q, respectively. Let his initial capital be z > 0 and let him play
against an adversary with initial capital a−z > 0 so that the combined capital
is a. The game continues until the gambler’s capital either is reduced to zero
or has increased to a. The probability of the gambler’s ultimate ruin is given
by

qz =

{
(q/p)a−(q/p)z

(q/p)a−1 if p �= q,
1− z

a otherwise.
(5.5)

The probability pz of winning satisfies pz + qz = 1, and the solution (qz, pz)
is uniquely determined.
A game against an infinitely rich adversary (a→∞) leads to

qz =
{

1 if p ≤ q,
(q/p)z otherwise. (5.6)

The expected duration of the game is given by

Dz =

{
z

q−p − a
q−p · 1−(q/p)z

1−(q/p)a if p �= q,
z(a− z) otherwise.

(5.7)

Proof. After the first trial the gambler’s fortune is either z − 1 or z + 1.
Therefore, the difference equation

qz = pqz+1 + qqz−1, 1 < z < a, (5.8)

with boundary conditions q0 = 1 and qa = 0 holds. Let p �= q. The difference
equation (5.8) has the solutions qz = 1 and qz = (q/p)z. The linear combi-
nation of both solutions with arbitrary constants A and B also provides a
solution

qz = A + B

(
q

p

)z

. (5.9)
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The boundary conditions imply that A + B = 1 and A + B(q/p)a = 0,
and hence the term (5.5), forms a solution of the difference equation (5.8)
satisfying the boundary conditions.

If p = q = 1/2, then qz = 1 and qz = z are solutions of the difference
equation (5.8), and therefore qz = A + Bz is a solution, where A and B are
arbitrary constants. The boundary conditions require that A = 1 and A +
Ba = 0, and hence qz = 1− z/a is a solution of the difference equation (5.8)
satisfying the boundary conditions.

The probability pz of the gambler’s winning equals the probability of the
adversary’s ruin and is therefore obtained from the above formulas on replac-
ing p, q and z by q, p and a − z, respectively. From this it can be readily
seen that pz + qz = 1 holds. Claim that the solution is unique. Indeed, given
an arbitrary solution of Eq. (5.8), the constants A and B can be chosen so
that Eq. (5.9) will agree with it for z = 0 and z = 1. From these two val-
ues all other values can be found by substituting in Eq. (5.8) successively
z = 1, 2, 3, . . ..

The limiting case a =∞ immediately follows from Eq. (5.5).
Finally, if the gambler’s first trial results in success the expected duration is

Dz+1+1. Therefore, the expected duration Dz satisfies the non-homogeneous
difference equation

Dz = pDz+1 + qDz−1 + 1, 0 < z < a, (5.10)

with boundary conditions D0 = 0 and Da = 0. If p �= q, then Dz = z/(q− p)
is a solution of Eq. (5.10). The difference Δz of any two solutions satisfies
the homogeneous equation Δz = pΔz+1 + qΔz−1, and we already know that
all solutions of this equation are of the form A + B(q/p)z . It follows that all
solutions of Eq. (5.10) have the shape

Dz =
z

q − p
+ A + B

(
q

p

)z

. (5.11)

The boundary conditions require that A+B = 0 and A+B(q/p)a = −a/(q−
p). Solving for A and B, we find the first equation in Eq. (5.7).

If p = q = 1/2, then qz = −z2 is a solution of Eq. (5.10), and all solutions
of Eq. (5.10) are of the form Dz = −z2 + A+ Bz. The solution Dz satisfying
the boundary conditions is Dz = z(a− z), as needed. �
Let p be the probability that a separation step correctly moves a complex.
If each complex continues to be processed until it reaches either T−N or
TN , then by setting a = 2N and z = N , Eq. (5.6) yields the probability of
correctly processing a complex,

p∞ = 1−
(

1− p

p

)N

. (5.12)
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Moreover, Eq. (5.7) provides the expected time for a complex to arrive in
either T−N or TN . If p �= 1

2 then

τN =
N

1− 2p

(
1− 2

1− rN

1− r2N

)
, r =

1− p

p
, (5.13)

and if p = 1
2 , then τN = N2. For instance, if p = 0.9 and N = 5, then

p∞ = 0.99998 and the expected time is τ5 = 6.25.

5.4 Splicing Systems

Splicing systems are generative mechanisms based on the splicing operation
formalized by T. Head (1987) as a model of DNA recombination. It will be
proved that the generative power of splicing systems equals that of Turing
machines and that universal splicing systems exist that are able to simulate
any Turing program.

5.4.1 Basic Splicing Systems

The splicing system model is based on an operation specific to DNA recombi-
nation, which can be thought of as a combination of cutting double-stranded
DNA molecules and reconnecting the cut parts to obtain new DNA molecules.
This operation, termed splicing, should not be confused with the splicing
operation used in gene transcription in eukaryotic cells.

Example 5.26. Consider two double-stranded DNA molecules

5′ − CCCCCTCGACCCCC− 3′ 5′ − AAAAATCGAAAAAA− 3′

3′ − GGGGGAGCTGGGGG− 5′ 3′ − TTTTTAGCTTTTTT− 5′

and the restriction enzyme TaqI with the recognition site

5′ − TCGA− 3′

3′ − AGCT− 5′ .

This enzyme cuts the DNA molecules at its recognition sites

5′ − CCCCCT
3′ − GGGGGAGC

CGACCCCC− 3′

TGGGGG− 5′
5′ − AAAAAT
3′ − TTTTTAGC

CGAAAAAA− 3′

TTTTTT− 5′ .

Recombination or splicing of molecules one and four and molecules two and
three yields the double-stranded molecules
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5′ − CCCCCTCGAAAAAA− 3′ 5′ − AAAAATCGACCCCC− 3′

3′ − GGGGGAGCTTTTTT− 5′ 3′ − TTTTTAGCTGGGGG− 5′ .

♦
A splicing system is a quadruple S = (Σ, V, R, A) consisting of a finite set

of terminal symbols Σ, a finite set of non-terminal symbols V with Σ∩V = ∅,
a finite set of splicing rules R ⊆ Γ ∗#Γ ∗$Γ ∗#Γ ∗, where Γ = Σ ∪ V and #
and $ are special symbols not contained in Γ , and a finite set of axioms
A ⊆ Γ ∗.

The splicing rules are used to provide one-step derivations. For this, r =
w1#w2$w3#w4 ∈ R and define (u, v) �r (x, y), u, v, x, y ∈ Γ ∗, if there are
strings u1, u2, v1, v2 ∈ Γ ∗ so that

u = u1w1w2u2,

v = v1w3w4v2,

x = u1w1w4v2, (5.14)
y = v1w3w2u2 .

Example 5.27. Consider the splicing system S = (Σ, V, R, A) with Σ =
{a, b, c}, V = ∅, R = {rb = b#$b#, rc = c#$c#} and A = {abaca, acaba}.
We have

(ab|aca, acab|a) �rb
(aba, acabaca), (5.15)

(abac|a, ac|aba) �rc (abacaba, aca), (5.16)

where vertical bars indicate the substrings. ♦
The splicing rules provide a basic tool for building a generative mechanism.

To this end, the language generated consists of the strings over Σ, which
are iteratively obtained by applying the rules to the axioms and the strings
obtained in preceding splicing steps. More precisely, for any language L ⊆ Γ ∗,
define

σ(L) =
{x ∈ Γ ∗ | (u, v) �r (x, y) or (u, v) �r (y, x), u, v ∈ L, r ∈ R} . (5.17)

Moreover, let

σ∗(L) =
⋃

n≥0

σn(L), (5.18)

where

σ0(L) = L, (5.19)
σn+1(L) = σn(L) ∪ σ(σn(L)), n ≥ 0. (5.20)
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The language of the splicing system S is defined as

L(S) = σ∗(A) ∩Σ∗ . (5.21)

Example 5.28. Reconsider the splicing system S in Example 5.27. By using
the strings on the right hand side in Eqs. (5.15) and (5.16), we obtain

(abacab|a, ab|aca) �rb
(abacabaca, aba), (5.22)

(acabac|a, ac|aba) �rc (acabacaba, aca) . (5.23)

More generally, for each n ≥ 1,

((abac)nab|a, ab|aca) �rb
((abac)n+1a, aba), (5.24)

((acab)nac|a, ac|aba) �rc ((acab)n+1a, aca), (5.25)
((acab)n|a, ab|aca) �rb

((acab)naca, aba), (5.26)
((abac)n|a, ac|aba) �rc ((abac)naba, aca) . (5.27)

Thus, the language of the splicing system S contains the language described
by the regular expression

(abac)+a ∪ (acab)∗aca ∪ (abac)∗aba ∪ (acab)+a . (5.28)

The converse inclusion also holds, since the splicing operations only lead to
strings described in the above derivations. ♦

Given a splicing system S = (Σ, V, R, A) with Γ = Σ∪V , a multiplicity is
associated with each string in Γ ∗. This multiplicity is a non-negative integer
indicating how often the string is available in S. At the beginning of a deriva-
tion, each axiom is assigned a multiplicity. In each application of a splicing
rule (u, v) �r (x, y), the multiplicities of the strings u and v are decremented
by 1, while the multiplicities of the strings x and y are incremented by 1. A
string with multiplicity 0 is no longer available in S and cannot be used for
splicing.

5.4.2 Recursively Enumerable Splicing Systems

It will be shown that the generative power of splicing systems equals that
of Turing machines. The proof follows the work of G. Păun and coworkers
(1999).

Theorem 5.29. The set of type-0 languages equals the set of languages gen-
erated by splicing systems.
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Proof. Given a type-0 grammar G = (Σ, V, P, S) in Kuroda normal form
(i.e., the rules in P are of the form (u, v) with 1 ≤ |u| ≤ 2 and 0 ≤ |v| ≤ 2,
u �= v). Put Γ = Σ ∪ V . Define the splicing system S = (Σ, V ′, R, A), where

V ′ = V ∪ {X1, X2, Y, Z1, Z2} ∪ {(r), [r] | r ∈ P} ,

the multiset A contains the string w0 = X2
1Y SX2

2 with multiplicity 1 and
the following strings with infinite multiplicity:

wr = (r)v[r], r = (u, v) ∈ P,

wα = Z1αY Z2, α ∈ Γ,

w′
α = Z1Y αZ2, α ∈ Γ,

wt = Y Y,

and the set R holds the following splicing rules:

1. δ1δ2Y u#β1β2$(r)v#[r] where r = (u, v) ∈ P,
β1, β2 ∈ Γ ∪ {X2}, δ1, δ2 ∈ Γ ∪ {X1},

2. Y #u[r]$(r)#vα where r = (u, v) ∈ P, α ∈ Γ ∪ {X2},
3. δ1δ2Y α#β1β2$Z1αY #Z2 where α ∈ Γ, β1, β2 ∈ Γ ∪ {X2},

δ1, δ2 ∈ Γ ∪ {X1},
4. δ#Y αZ2$Z1#αY β where α ∈ Γ, δ ∈ Γ ∪ {X1},

β ∈ Γ ∪ {X2},
5. δαY #β1β2β3$Z1Y α#Z2 where α ∈ Γ, β1 ∈ Γ,

β2, β3 ∈ Γ ∪ {X2}, δ ∈ Γ ∪ {X1},
6. δ#αY Z2$Z1#Y αβ where α ∈ Γ, δ ∈ Γ ∪ {X1},

β ∈ Γ ∪ {X2}
7. #Y Y $X2

1Y #w where w ∈ {X2
2} ∪ V {X2

2} ∪ V 2{X2} ∪ V 3,
8. #X2

2$Y 3# .

The rules in the groups 1 and 2 simulate rules in P in the presence of Y . The
rules in the groups 3 and 4 move Y to the right, and the rules in the groups 5
and 6 move Y to the left. At any time, there are two occurrences of X1 at the
beginning of a string and two occurrences of X2 at the end of a string. The
rules in the groups 1, 3, and 5 separate strings of the form X2

1zX2
2 into strings

X2
1z1 and z2X

2
2 , while the rules in the groups 2, 4, and 6 bring these strings

together, leading to a string of the form X2
1z′X2

2 . The rules in the groups 7
and 8 remove the auxiliary symbols X1, X2, and Y . If the remaining string is
terminal, then it belongs to L(G). Induction on the length of the derivation
can be used to verify that each derivation in G can be simulated by S. Hence,
L(G) ⊆ L(S).

Conversely, the splicing system starts with the main axiom w0 =
X2

1Y SX2
2 , because it is not possible to splice two of the axioms wr, wα, w′

α,
and wt. By induction, assume that we have derived a string X2

1w1Y w2X
2
2

with multiplicity 1. If w2 starts with the left hand side of a rule in P , then
we can apply to it a rule of group 1. If so, the string is X2

1w1Y uw3X
2
2 for
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some rule r = (u, v) ∈ P . By using the axiom wr = (r)v[r], we obtain

(X2
1w1Y u|w3X

2
2 , (r)v|[r]) � (X2

1w1Y u[r], |(r)vw3X
2
2 ) .

Here, no rule from the groups 1 and 3 to 8 can be applied to the derived
strings, because no string containing Y 3 is derived. The rule Y #u[r]$(r)#vα
from group 2 can be applied leading to

(X2
1w1Y |u[r], (r)|vw3X

2
2 ) � (X2

1w1Y vw3X
2
2 , (r)u[r]) .

The string (r)u[r] cannot be spliced, since in the rule r = (u, v) it was assumed
that u �= v. The multiplicities of X2

1w1Y u[r] and (r)vw3X
2
1 are 0, while

the multiplicity of X2
1w1Y vw3X

2
2 is 1. Thus we derive X2

1w1Y vw3X
2
2 from

X2
1w1Y uw3X

2
2 , both having multiplicity 1, which corresponds to using the

rule r = (u, v) in P .
Moreover, at any time, there is only one string containing X2

1 and only
one string containing X2

2 . If a rule in group 3 is applied to X2
1w1Y αw3X

2
2 ,

then we derive

(X2
1w1Y α|w3X

2
2 , Z1αY |Z2) � (X2

1w1Y αZ2, Z1αY w3X
2
2 ) .

Here, no rules from the groups 1 to 3 and 5 to 8 can be applied to the derived
strings. By using a rule from group 4, we obtain

(X2
1w1|Y αZ2, Z1|αY w3X

2
2 ) � (X2

1w1αY w3X
2
2 , Z1Y αZ2) .

The first resulting string X2
1w1αY w3X

2
2 replaces the string X2

1w1Y αw3X
2
2 ,

which now has multiplicity 0, and thus Y interchanges with α. The second
resulting string is an axiom.

Similarly, one can see that using a rule from group 5 must be followed by
using the corresponding rule from group 6, which results in interchanging Y
with its left-hand neighbor.

Therefore, at each time, we have either the string X2
1w1Y w2X

2
2 or the

strings X2
1z1 and z2X

2
2 , each with multiplicity 1. Only in the first case, pro-

vided w1 = ε, X2
1Y can be removed by using a rule from group 7. Then we

can also remove X2
2 by using a rule from group 8. This is the only way to

remove these non-terminal symbols. If the obtained string is not terminal,
then it cannot be further processed, because it does not contain the symbol
Y . Consequently, we can only simulate derivations in G and move Y freely
in the string of multiplicity 1. Hence, L(S) ⊆ L(G). �

5.4.3 Universal Splicing Systems

It will be shown that programmable computers based on splicing can be
built. A universal splicing system behaves as any splicing system S, when
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an encoding of S is introduced into the set of axioms of the universal
system.

Theorem 5.30. For each alphabet Σ, there exists a splicing system that is
universal for the class of splicing systems with terminal alphabet Σ.

Proof. For the class of type-0 grammars with terminal alphabet Σ there
is a universal grammar, that is, a grammar GU = (Σ, VU , PU ,−) so that
for any type-0 grammar G = (Σ, V, P, S) there is a string S(G) ∈ (Σ ∪
VU )∗, the code of G, so that for the grammar G′

U = (Σ, VU , PU , S(G)), we
have that L(G′

U ) = L(G). This holds in terms of the existence of universal
Turing machines and the relationship between Turing machines and type-0
grammars.

Let GU = (Σ, VU , PU ,−) be a universal type-0 grammar. Following the
proof in Theorem 5.29, we obtain a splicing system S1 = (Σ, V1, R1, A1),
where the axiom w0 (with multiplicity 1) is not considered and all other
axioms (with infinite multiplicity) are fixed.

First, we pass from the splicing system S1 to the splicing system S2 =
(Σ, V2, R2, A2), which contains only one axiom (with infinite multiplicity)

Z = d1cwrcwαcw′
αcwtcd2 ,

where d1, d2, and c are newly introduced non-terminals. Moreover,

R2 = R1 ∪ {#c$d2#, #d1$c#, } .

Thus, the string Z can be employed for cutting each original axiom. From
this it follows that L(S2) = L(S1).

Second, we pass from the splicing system S2 to the splicing system SU =
(Σ, {c1, c2}, RU , AU ). For this, encode each non-terminal symbol in V2 =
{Z1, . . . , Zn} through a string over {c1, c2} by using the homomorphism

φ(Zi) = c1c
i
2c1, 1 ≤ i ≤ n,

φ(a) = a, a ∈ Σ.

Then we put

AU = φ(A2),
RU = {φ(u1)#φ(u2)$φ(u3)#φ(u4) | u1#u2$u3#u4 ∈ R2} .

It follows that L(SU ) = L(S2), since the strings c1c
i
2c1, 1 ≤ i ≤ n, are never

broken by splicing and thus behave in the same way as the corresponding
non-terminals in S2.

Claim that the splicing system SU is universal. Indeed, let S = (Σ, V, R, A)
be a splicing system. It follows from Church’s thesis that there is a type-0
grammar G = (Σ, V ′, P, S) so that L(S) = L(G). Take the code of G, w(G),
consider the string
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w′
0 = X2

1Y w(G)X2
2 ,

apply the homomorphism φ to this string, and let w(S) denote the resulting
string over Σ ∪ {c1, c2}. The splicing system S′

U = (Σ, {c1, c2}, RU , AU ∪
{w(S)}), with the axiom w(S) having multiplicity 1, has the desired property
L(S′

U ) = L(S). �

5.4.4 Recombinant Systems

Recombinases are enzymes that recombine DNA between specific recognition
sequences. For instance, the commercially available AttSiteTM recombinases
from RheoGene Inc., are gene-targeting enzymes that catalyze insertion, dele-
tion or inversion of DNA at specific locations within the genome. These loca-
tions are known as attP and attB sites. Recombination is irreversible because
the new sites created during recombination, attL and attR, are not recognized
by these recombinases. AttSiteTM recombinases have robust activity in a wide
range of hosts, including human stem cells and plant cells.

AttSiteTM recombinases give rise to three formal operations. For this, let
Σ be an alphabet. Two strings over Σ are called cyclically equivalent if one is
a cyclic permutation of the other. That is, two strings w and w′ are cyclically
equivalent if and only if there exist strings u and v so that w = uv and
w′ = vu. This relation is an equivalence relation on Σ∗, and each equivalence
class is termed a circular string. For instance, the string w = abba belongs to
the equivalence class {abba, aabb, baab, bbaa}. In the following, •w stands for
any of the cyclic permutations of the characters in w, and Σ• denotes the set
of all circular strings over Σ.

First, integration (Fig. 5.11) inserts a plasmidal strand (circular DNA)
into a chromosomal strand (linear DNA),

uBw
•vP

}
⇒ uLvRw . (5.29)

Fig. 5.11 Integration.
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Fig. 5.12 Exchange.

+
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Second, exchange (Fig. 5.12) replaces a chromosomal substrand with a plas-
midal strand,

uBvBw
•v′P

}
⇒ uLv′Rw . (5.30)

Third, deletion (Fig. 5.13) deletes a substrand from a chromosome and the
deleted strand forms a plasmid. This operation is the converse of integration,

uBvPw ⇒
{

uLw,
•vR .

(5.31)

More generally, a recombinant system is a quadruple R = (Σ, V, P, S)
consisting of a finite set of terminal symbols Σ, a finite set of non-terminal
symbols V with Σ ∩ V = ∅, a finite set of production rules P providing
integration, exchange, and deletion, and a start symbol S ∈ V .

Fig. 5.13 Deletion.
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Integration is of the form (A, •yB) →R CyD, exchange has the shape
(AwA, •yB) →R CyD, and deletion has the form AyB →R (C, •yD), where
A, B, C, D ∈ V and w, y ∈ (Σ ∪ V )∗.

Let u, v ∈ (Σ ∪ V )∗. Write u ⇒R v if v is derived from u by integration,
exchange, or deletion. Integration means (A, •yB)→R CyD ∈ P and

u = xAz, (5.32)
v = xCyDz, x, z ∈ (Σ ∪ V )∗.

Exchange stands for (AwA, •yB) →R CyD ∈ P and

u = xAwAz, (5.33)
v = xCyDz, w, x, z ∈ (Σ ∪ V )∗.

Deletion signifies AyB →R (C, •yD) ∈ P and

u = xAyBz, (5.34)
v = xCz, x, z ∈ (Σ ∪ V )∗.

Additional production rules of the form C →R ε are required, where C is a
non-terminal symbol occurring only on the right hand side in the production
rules of integration, exchange, and deletion. Let ∗⇒R denote the reflexive and
transitive closure of ⇒R. The language generated by R is given by

L(R) = {w ∈ Σ∗ | S ∗⇒R w} . (5.35)

Theorem 5.31. For each type-2 grammar G there is a recombinant system
R, which only makes use of integration, so that L(G) = L(R), and vice versa.

Proof. Let G = (Σ, V, P, S) be a type-2 grammar. For each rule A →G w
define the integration rule (A, •wB) →R CwD, where C and D only occur
on the right hand side in the production rules. The corresponding recombi-
nant system R = (Σ, V, P ′, S) satisfies L(R) = L(G). This assertion can be
reversed. �
Example 5.32. Consider the type-2 grammar G in Example 2.43. The corre-
sponding recombinant system R is given by Σ = {a, b}, V = {S, B, C, D},
start symbol S, and the production rules (S, •aSbB)→ CaSbD, (S, •abB)→
CabD, C → ε, and D → ε. For instance, the string a3b3 is derived in G and
R as follows:

S ⇒G aSb⇒G aaSbb⇒G aaabbb,

S ⇒R CaSbD ⇒R CaCaSbDbD⇒R CaCaCabDbDbD
∗⇒R aaabbb .

♦
Theorem 5.33. The set of type-0 languages equals the set of languages gen-
erated by recombinant systems.



178 5 Non-Autonomous DNA Models

Proof. Let G = (V, Σ, P, S) be a type-0 grammar. Three cases are distin-
guished. First, for each rule S →G w define the integration rule (S, •wB)→R

CwD. Second, for each rule v →G w with w �= ε define the exchange rule
(AvA, •wB) →R CwD. Third, for each rule v →G ε define the deletion
rule AvA→R (C, •vD). The non-terminals C and D are chosen so that they
occur only on the right hand sides in the production rules. The corresponding
recombinant system R = (Σ, V, P ′, S) satisfies L(R) = L(G). The converse
follows by using Church’s thesis. �
Example 5.34. Consider the type-1 grammar G in Example 2.41. The corre-
sponding recombinant system R over the alphabet {a, b, c} has the production
rules (S, •aBScX) → CaBScD, (S, •abcX) → CabcD, (XBaX, •aBY ) →
CaBD, (XBbX, •bbY ) → CbbD, C → ε, and D → ε, and start symbol S.
For instance, the word a2b2c2 is derived in G and R as follows:

S ⇒G aBSc⇒G aBabcc⇒G aaBbcc⇒G aabbcc,

S ⇒R CaBScD ⇒R CaBCabcDcD
∗⇒R aBaabcc⇒R aCaBDbcc

⇒R aaBbcc⇒R aaCbbDcc
∗⇒R aabbcc .

♦

Concluding Remarks

The first generation of DNA computing mainly aimed to tackle hard com-
putational problems. For this, new paradigms of computing were devised
that basically filter a large search space in a parallel manner. However, these
paradigms do not provide new insights into computational complexity theory.
Problems which grow exponentially with the problem size on a conventional
computer still grow exponentially with the problem size on a DNA machine.
For very large problem instances, the amount of the DNA required is too
large to be practical. On the other hand, the DNA algorithms of the first
generation may be suitable to run on dedicated hardware if combined with
appropriate heuristics that provide the data objects in question.
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Chapter 6

Autonomous DNA Models

Abstract The second generation of DNA computing focusses on models that
are molecular-scale, autonomous, and partially programmable. The compu-
tations are essentially driven by the self-assembly of DNA molecules and
are modulated by DNA-manipulating enzymes. This chapter addresses basic
autonomous DNA models emphasizing tile assembly, finite state automata,
Turing machines, neural networks, and switching circuits.

6.1 Algorithmic Self-Assembly

The idea of algorithmic self-assembly arose from the combination of DNA
computing, tiling theory, and DNA nanotechnology. Algorithmically self-
assembled structures span a wide range between maximally simple structures
(crystals) and arbitrarily complex information processing tilings (supramolec-
ular complexes). Algorithmic self-assembly is amenable to experimental inves-
tigations allowing the understanding of involved physical phenomena. This
understanding may eventually result in new nanostructure materials and
devices.

6.1.1 Self-Assembly

Algorithmic self-assembly was first explored by E. Winfree in the late 1990s.
We follow his remarkable thesis (1998) in order to introduce a mathematical
model of DNA self-assembly. This model is based on three basic operations:
annealing, ligation, and denaturation. A physical system realizing DNA self-
assembly may work as follows:

• Synthesize several DNA molecules.
• Mix the DNA together in solution.

Z. Ignatova et al., DNA Computing Models, 181
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• Heat up the solution and slowly cool it down, allowing complexes of double-
stranded DNA to form.

• Ligate adjacent strands.
• Denaturate the DNA again.
• Determine what single-stranded DNA molecules are present in the solu-

tion.

The outcome of such a physical self-assembly process is hard to predict.
Therefore, we simplify the mathematical model of DNA self-assembly by
introducing the following constraints:

• Constant temperature: The number of base pairs required for the stability
of DNA molecules remains invariant during self-assembly. We consider nei-
ther annealing at high temperature allowing only long regions to hybridize
nor annealing at low temperature stimulating the hybridization of short
regions.

• Perfect complementarity: Annealing only takes place between DNA strands
with perfect Watson-Crick complementarity, while the annealing of mis-
matched DNA strands that creates unusual structures such as bubbles,
branched junctions or triple helices is not considered.

• Permanent binary events: Each self-assembly event is binary (i.e., occurs
only between two DNA molecules), and permanent (i.e., joined DNA
molecules never dissociate).

• Initial DNA molecules: Some DNA molecules are formed prior to self-
assembly. These molecules include single-stranded DNA, double-stranded
DNA with sticky ends, and possibly some unusual DNA structures.

• Intramolecular events: A self-assembled DNA molecule may interact with
itself by forming secondary structures such as hairpins.

• Single or multiple binding regions: A binary annealing event can create
either a single contiguous Watson-Crick region or multiple contiguous
Watson-Crick regions.

The first four constraints are used throughout this section, while the last two
contraints may vary from model to model.

6.1.2 DNA Graphs

A DNA graph represents several DNA polynucleotides bound together by
Watson-Crick hybridization. Formally, a DNA graph is a connected graph
with vertices labelled from the DNA alphabet Δ = {A, C, G, T} and edges
labelled as either backbone or base-pair . The backbone edges are directed
indicating the 5’ to 3’ direction, while the base-pair edges are undirected and
are of the Watson-Crick type. Moreover, each vertex in a DNA graph has at
most one incoming and one outgoing edge of each type. Specifically, there are
ten DNA graphs with two backbone edges and two base-pair edges (Fig. 6.1).
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A �� A A �� G A �� C A �� T C �� A

T T�� T C�� T G�� T A�� G T��

C �� C C �� G G �� A G �� C T �� A

G G�� G C�� C T�� C G�� A T��

Fig. 6.1 The 10 Watson-Crick subgraphs.

DNA graphs can represent a rich variety of DNA structures, but structures
such as triple helices are missing and notions of geometry and topology are
lacking. However, it is possible that DNA graphs specify physically impossible
structures.

Three basic operations on DNA graphs are introduced, each having a phys-
ical counterpart:

• Annealing: Take two DNA graphs D1 and D2 and provide a compound
DNA graph D3 = D1 + D2 by forming base-pair edges linking vertices in
D1 with vertices in D2.

• Ligation: Consider a DNA graph D and produce a DNA graph D′ = −D
by adding backbone edges linking vertices in D.

• Denaturation: Pick a DNA graph D and derive a set of DNA graphs Dd =
{Di}, each being a backbone component of D with no base-pair edges.

Example 6.1. Consider two DNA graphs with complementary sticky ends
(Fig. 6.2). Annealing yields a compound DNA graph. After ligation, the DNA
graph is denaturated, resulting in two single strands. ♦

Let A be a set of DNA graphs. The language of A is given by the set L(A)
of all DNA graphs that can be obtained from the DNA graphs in A by a
finite number of annealing and ligation cycles. DNA annealing and ligation
can produce many unusual structures in addition to the usual B-form double
helix such as hairpins, three armed junctions, and double crossover (DX)
molecules (Fig. 6.5).

Denaturating each DNA graph in L(A) yields a set of single DNA strands
that is called the denaturation language of A given by

Ld(A) =
⋃
{Dd | D ∈ L(A)} . (6.1)

Single DNA strands can be translated into strings over another alpha-
bet Σ by using a codebook over Σ, which assigns to each symbol a in Σ a
string CΣ(a) over Δ. This assignment must obey the Fano condition, which
says that no string in the codebook is a prefix of another string in the code-
book. Otherwise, the assignment will not be well-defined. A DNA strand
x = a1 . . . an is translated into a string over Σ by scanning through the strand
x from left to right so that if ai begins a subsequence of x which matches
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A �� G �� C

T C�� G�� C�� C�� C��

+
G �� G �� G �� A �� T �� T

T A�� A�� C��

Annealing
�

A �� G �� C G �� G �� G �� A �� T �� T

T C�� G�� C�� C�� C�� T A�� A�� C��

Ligation
�

A �� G �� C �� G �� G �� G �� A �� T �� T

T C�� G�� C�� C�� C�� T�� A�� A�� C��

Denaturation �

A �� G �� C �� G �� G �� G �� A �� T �� T

T C�� G�� C�� C�� C�� T�� A�� A�� C��

Fig. 6.2 Annealing, linkage, and denaturation of two DNA graphs.

some CΣ(a), then ai is replaced by a. Otherwise, ai is deleted and then ai+1

is processed. Write C−1
Σ (x) for the correspondingly translated string over Σ.

Example 6.2. Consider the codebook over Σ = {a, b} given by CΣ(a) = AGT
and CΣ(b) = ACA. This codebook satisfies the Fano condition and maps the
DNA strand x = GGGACACAGTACAT to C−1

Σ (x) = bbab. ♦
In this way, the denaturation language of A and the codebook C over Σ
provide the language of A and C over Σ defined as

Ld(A, C) =
⋃
{C−1

Σ (Dd) | D ∈ L(A)} , (6.2)

where C−1
Σ (Dd) = {C−1

Σ (x) | x ∈ Dd} is the set of strings translated from
the denaturated DNA graph Dd via the codebook.

6.1.3 Linear Self-Assembly

Linear self-assembly proceeds at a constant temperature, affords perfect
Wat-son-Crick complementarity, enables permanent binary events, and dis-
allows intramolecular events. Moreover, linear self-assembly is based on
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binary annealing events that create single contiguous Watson-Crick regions
and begins with single-stranded DNA or double-stranded DNA with sticky
ends.

Theorem 6.3. Let Σ be an alphabet. For each regular language L over Σ,
there exists a set A of single strands or double strands with sticky ends and
a codebook C over Σ so that L = Ld(A, C). For each set A of single strands
and double strands with sticky ends and each codebook C over Σ, the language
Ld(A, C) is regular over Σ.

Proof. Let L be a regular language over Σ. There is a regular grammar G with
L(G) = L so that all production rules are of the form (A, aB), (A, a) or (A, ε),
where A and B are non-terminal symbols and a is a terminal symbol. First,
design sufficiently dissimilar DNA sequences for all terminal and non-terminal
symbols in G. Denote the encoding of a symbol X by Xs and let Xs denote its
Watson-Crick complement. For each production rule (A, aB), design a double
strand beginning with sticky end As, followed by double strand as, and ending
with sticky end Bs. Similarly, for each production rule (A, a), design a double
strand beginning with sticky end As followed by double strand as. Moreover,
for each production rule (A, ε), design a single strand As. Finally, for the
start symbol S design a double strand starting with a blunt end followed by
sticky end Ss. These single strands and double strands with sticky ends form
the initial set A. After self-assembly, the complexes in L(A) correspond to
derivations in G. After ligation, each DNA graph in L(A) will be double-
stranded without sticky ends whose sequence consists of terminal symbols
interspersed with non-terminal symbols. After denaturation, the codebook
given by CΣ(a) = as for each terminal symbol a will delete the non-terminal
symbols and provide the language L = Ld(A, C), as required.

Conversely, the same construction from a set A of single strands and double
strands with sticky ends leads, via a codebook C over Σ, to a regular grammar
G so that L(G) = Ld(A, C). �
Example 6.4. Consider the regular grammar G given by the terminal set
Σ = {a, b}, non-terminal set V = {S, A}, start symbol S, and production
rules (S, ε), (S, a), (S, aS), (S, bA), (A, aA), and (A, bS). The corresponding
language consists of all strings over Σ with an even number of b’s. Encode
the grammar by the set A of partially double-stranded DNA graphs given
in Figure 6.3, and take the codebook over Σ given by CΣ(a) = AGT and
CΣ(b) = ACA. It follows that the language Ld(A, C) equals the language of G
(Fig. 6.4). ♦

6.1.4 Tile Assembly

The tile assembly model introduced by E. Winfree (1998) connects the theory
of tilings with structural DNA nanotechnology first studied by N. Seeman
(1982).
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S:
C �� G �� C

G C�� G�� T�� T�� T��
S → ε: A A�� A��

S → a:
A �� A �� A �� A �� G �� T

T C�� A��

S → aS:
A �� A �� A �� A �� G �� T

T C�� A�� T�� T�� T��

S → bA:
A �� A �� A �� A �� C �� A

T G�� T�� C�� C�� C��

A→ aA:
G �� G �� G �� A �� G �� T

T C�� A�� C�� C�� C��

A→ bS:
G �� G �� G �� A �� C �� A

T G�� T�� T�� T�� T��

Fig. 6.3 Encoding of regular grammar.

C �� G �� C �� A �� A �� A �� A �� G �� T �� A �� A �� A �� A �� G �� T

G C�� G�� T�� T�� T�� T�� C�� A�� T�� T�� T�� T�� C�� A��

C �� G �� C �� A �� A �� A �� A �� C �� A �� G �� G �� G �� A �� C �� A �� A �� A �� A

G C�� G�� T�� T�� T�� T�� G�� T�� C�� C�� C�� T�� G�� T�� T�� T�� T��

Fig. 6.4 Linear self-assembly of strings aa and bb by using the DNA strands shown
in Figure 6.3. The framed entries provide the symbols via the codebook.

Double Crossover Molecules

Combinatorial tiles can be realized by double-crossover (DX) molecules intro-
duced by T.-J. Fu and N. Seeman (1993). DX molecules are DNA struc-
tures with four sticky ends containing two crossovers that connect two heli-
cal domains. There are several types of DX molecules, differentiated by the
number of double helical half-turns, even (E) or odd (O), and by the relative
orientation of their helix axes, parallel (P) or anti-parallel (A) (Fig. 6.5).
DX molecules are analogues of intermediates in meiosis that consist of two
side-by-side double-stranded helices linked at two crossover junctions. In par-
ticular, anti-parallel DX molecules of types DAO and DAE exhibit rigidity,
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5’ 3’
x y z

5’ 3’
d z u b

5’ 3’
y v

5’ 3’
a w x c

5’ 3’
u v w

5’ 3’
x y z

5’ 3’
w v u

3’ 5’
c d

5’ 3’
a b

x y z
w v u

Fig. 6.5 Construction of DAE.

making them suitable for use in the self-assembly of periodic matter. The
four sticky ends of DX molecules can be encoded accordingly so that they
correspond to the labels on the four sides of the Wang tiles (Fig. 6.6). This
allows in principle to encode any finite set of Wang tiles by DX molecules.

Self-Assembly of DX Molecules

The self-assembly of DX molecules needs to be controlled so that the arrange-
ment of DX molecules results in a tiling. For this, a specific self-assembly
model called tile assembly model is considered. This model proceeds at
a constant temperature, affords perfect Watson-Crick complementarity of
the DX molecule’s sticky ends, enables permanent binary events, disallows
intramolecular events, and involves multiple binding regions.

In the tile assembly model, an unattached DX molecule may anneal to a
two-dimensional lattice of DX molecules if there is a free slot in the lattice
into which the molecule will fit and the molecule’s sticky ends can anneal to
free sticky ends in the lattice. It is crucial that a DX molecule that matches
one side in a slot but not the other side will not anneal to the lattice. Under
appropriate conditions, DX molecules binding to only one side in a slot soon
dissociate, while fully matching DX molecules permanently bind. Therefore,
slot filling is considered as one single permanent binary event involving two
binding regions and the temperature needs to be chosen so that binding of

a b

c d

�
�

�

�
�

�

�
�

�

�
�

�

Fig. 6.6 Representation of DAE as a tile.
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single sites will not occur. The tile assembly model makes use of the following
additional assumptions:

• Binding strength: The DNA annealing strength of DX molecules primarily
depends on the number of base pairs so that longer sticky ends represent
edge labels with higher strength and vice versa. In this way, the strength
of edge labels can be implemented by designing sticky end sequences with
specific energetics of annealing.

• Cooperative binding strength: The binding of DX molecules where two
sticky end sequences anneal is cooperative in the sense that the binding
strength of sticky-end annealing is additive.

• Strength parameter: There is a physical parameter T that determines
the strength required for association of molecular tiles. In this way, DX
molecules will only stick to a growing crystal if they bind with a total
strength greater than or equal to the threshold T , while DX molecules
with a weaker strength immediately fall off.

The temperature can serve as a strength parameter, because sticky ends
bind more strongly at low temperatures, while at higher temperatures the
sticky ends need to be longer for stable addition. Let T0, T1, and T2 be
the melting temperatures for a DX molecule fitting into a lattice slot where
respectively 0, 1, and 2 of the sticky end pairings match. Since higher binding
strength is directly proportional to higher melting temperature, it follows that
T0 < T1 < T2. Equivalently, the discrete values 0, 1, and 2 can be used to
indicate the respective temperatures.

A computation in the tile assembly model starts from an arrangement of
seed tiles and proceeds in a controlled manner by annealing, linkage, and
denaturation of DX molecules.

Example 6.5. Consider the Pascal triangle and its modulo 2 variant termed
Sierpinsky triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
. . .

mod 2−→ 1

1 1

1 0 1

1 1 1 1

1 0 0 0 1
. . .

In the Pascal triangle, the kth entry in the nth row is given by the binomial
number

(
n
k

)
, which can be calculated from its above left and right neighbors by

the formula (5.3). Thus, the kth entry in the nth row of the Sierpinsky triangle
is simply computed by adding its above left and right neighbors modulo 2.
This observation provides the rule tiles in which all edges have strength 1
(Fig. 6.7). Moreover, three types of boundary tiles are defined (Fig. 6.8).
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Fig. 6.7 Rule tile set for the Sierpinski triangle with all edges having strength 1.
The values of the left and right neighbors are given above, and their sum modulo 2
is provided inside the tile and propagated below to the left and to the right.
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Fig. 6.8 Boundary tile set for the Sierpinsky triangle. Double edges have strength 2,
thin edges strength 1, and thick edges strength 0.

At temperature T = 0, every possible monomer addition is stable, and thus
random aggregates are produced. At temperature T = 1, at least one edge
must match for an addition to be stable, but the arrangement of tiles within
an aggregate depends upon the sequence of addition. At temperature T = 2,
self-assembly starting from an arrangement of seed tiles results in a unique
tiling corresponding to the Sierpinsky triangle (Fig. 6.9). At temperature
T = 3, no aggregates are formed. ♦

Tile assembly can be utilized to generate words from the language of a
grammar.

Example 6.6. Consider the regular grammar G with terminal set {a}, non-
terminal set {S, A}, start symbol S, and production rules (S, A), (A, a), and
(A, Aa). The production rules of G can be realized by the DX molecules
illustrated in Figure 6.10. Each such molecule has two or three sticky ends
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1 0 1

1 1

1

x y

x 0 0 y

x 0 1 1 0 y

x 0 1 1 1 1 0 y

x 0 1 1 0 0 1 1 0 y

Fig. 6.9 Tiling corresponding to the Sierpinsky triangle for temperature T = 2.
The arrangement of seed tiles consists of the four upper tiles. The upper middle tile
indicating 1 is only available in the seed arrangement.
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A→G Aa:

A

A a

A

a A

A→G a:

A

a

A

a

S →G A:

S

A

S

A

Fig. 6.10 DX molecules with two or three sticky ends encoding the production rules
of a regular grammar. Sticky ends are indicated by single lines while closed loops are
given by closed double lines. Each sticky end is labelled by a terminal or non-terminal,
where the Watson-Crick complement of a non-terminal X is denoted by X. Sticky
ends indicated by thick lines have strength 2, while the remaining have strength 1.

encoding the left and right hand sides of the associated production rule.
The seed tile is given by the production involving the start symbol S. Self-
assembly at temperature T = 2 eventually results in a lattice providing a
derivation given by the grammar G. ♦

Theorem 6.7. The tile assembly model is universal.

Proof. Given a one-dimensional BCA C. Claim that C can be simulated by
the tile assembly model. Indeed, for each transition rule (u, v) →C (x, y)
in C create a DX molecule whose sticky ends on one helix are the Watson-
Crick complements of u and v, and on the other helix are x and y (Fig. 6.11).
These DX molecules are added to the solution, which contains an arrangement
of seed tiles encoding the initial state of the automaton C (Fig. 6.12). All
sticky ends in the DX molecules are assumed to have strength 1. Then the
computation results in a unique tiling encoding the space-time history of the
BCA. �

The simulation of a one-dimensional BCA by the tile assembly model poses
two questions. The first question addresses the termination of the simulation.

u v

x y

Fig. 6.11 DX molecule for the BCA transition rule (u, v)→C (x, y).
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BCA: a1 a2 a3 a4 a5 a6

a1 a2 a3 a4 a5 a6

Fig. 6.12 Initial state of BCA and corresponding arrangement of seed tiles.

For this, suppose a computation of the one-dimensional BCA terminates when
a special halting symbol appears for the first time anywhere in a cell. The
halting symbol can be designed so that it corresponds to a special sticky end
motif. This motif can be chosen as the recognition site for a binding protein,
which could subsequently catalyze a phosphorescent reaction indicating ter-
mination. However, when the halting symbol first appears in the BCA, the
other cells are not aware that the computation is done. To this end, the cells
can be synchronized so that they enter a special state after the same number
of steps, and so terminate the computation at the same time. This problem
is termed firing squad problem and was first posed by J. Myhill in the late
1950s. After the phosphorescent reaction, E. Winfree suggested designing lin-
ear pieces of DNA that fit into the gaps at the final level of the lattice so
that it cannot grow further.

The second question concerns the output of the simulation result. To this
end, the level in the lattice containing the halting symbol needs to be ana-
lyzed. Here, E. Winfree proposed adding resolvase to break all crossover junc-
tions, then heating the solution in order to separate the strands, and using
affinity purification to extract the strand containing the halting motif.

Tile Assembly in Boolean Arrays

The Sierpinsky triangle can be specified by a two-dimensional Boolean array.
Now the tile assembly of general m × n Boolean arrays is addressed. For
this, assume that each tile T0(i, j), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, has the
form of a square and each side or pad of the square is associated with a
Boolean variable. The tile T0(i, j) has two input pads and two output pads
(Fig. 6.13). The input pads are given by Boolean variables b(i, j) (bottom)
and r(i, j) (right). The output pads correspond to Boolean variables b(i, j+1)
(top) and r(i+1, j) (left) and are defined by 2-adic Boolean functions ⊕ and
& as follows,

b(i, j + 1) = b(i, j)⊕ r(i, j) and r(i + 1, j) = b(i, j)& r(i, j) . (6.3)
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T0(i, j)

b(i, j + 1)

b(i, j)

r(i, j)r(i + 1, j)

Fig. 6.13 The tile T0(i, j).

Assume that the bottom row and the left-most column of the array provide
the inputs to the assembly (i.e., the Boolean variables b(0, j), 0 ≤ j ≤ n− 1,
and r(i, 0), 0 ≤ i ≤ m−1, are predefined). Then Eq. (6.3) can be used to fully
evaluate the Boolean array. This naive tile assembly model requires three tile
types for assembling the initial frame and 22 = 4 tile types for the interior
part, as each tile type depends on two input pads.

Example 6.8. The Sierpinsky triangle can be considered as an n× n Boolean
array, where the bottom row and the left most column all have 1’s, and the
functions ⊕ and & are both exclusive ORs. ♦

A critical issue in tile assembly is the pad mismatch rate, which determines
the size of the error-free assembly. Let ε be the probability of a single pad
mismatch between adjacent assembling tiles so that they still stay together
in equilibrium. Assume that the likelihood of a pad mismatch is indepen-
dent of any other match or mismatch. This independent error model was
studied by J.H. Reif and coworkers (2007). If an error in a pad in a tile
enforces k further mismatches in the assembly in the immediate neighbor-
hood of that tile, then the error probability reduces to εk+1. Indeed, if one
error enforces k more errors, then the probability that the tile and its neigh-
borhood in the assembly will stay together in the equilibrium in spite of
these k + 1 errors is εk+1. A key challenge in tile assembly is to make the
tiles error-resilient. The basic technique to achieve this is to extend the tile
complexity.

Accretive Graph Assembly Model

A more general tile assembly model was introduced by J.H. Reif and cowork-
ers (2005–2006). First, it involves not only attractive forces but also repulsive
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forces. Repulsive forces occur between hydrophobic and hydrophilic tiles, or
between tiles labelled by magnetic or charged pads of the same polarity. Sec-
ond, the model allows the assembly of graph-like structures and not only
rectangular tile structures.

A graph assembly system consists of a graph G = (V, E), a distinguished
vertex v0 ∈ V , an edge-weight function ω : E → Z, and a temperature
T ∈ Z. The graph G of a graph assembly system is sequentially constructible
if all its vertices can be attached one by one, starting from the distinguished
vertex, so that the support of the already assembled adjacent vertices exceeds
the temperature. That means, there is a total ordering of the vertices, v0 ≺
v1 ≺ . . . ≺ vn−1 beginning with the distinguished vertex, so that

∑

j

ω(vjvi) > T, 1 ≤ i ≤ n− 1, (6.4)

where the sum extends over all vertices vj adjacent to vi with j < i. The
system is accretive in the sense that already assembled components cannot
be subsequently removed from the assembly.

Example 6.9. Consider the graph in Figure 6.14. Take the strength T = 1.
The graph is sequentially constructible by the assembly order a ≺ b ≺ c ≺
d ≺ f ≺ g ≺ h ≺ i ≺ e. However, the vertex i cannot be assembled without
the support of the vertex h, that is, h ≺ i. The vertex e can be assembled
if two of the vertices b, d, and f are present and h is absent. But if the
vertex h is present, then the vertex e needs support from all three vertices
b, d, and f . ♦
Theorem 6.10 (Accretive Graph Assembly Problem). The problem of
finding an assembly ordering in a graph assembly system so that the graph is
sequentially constructible is NP-hard.
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Fig. 6.14 A graph for an accretive graph assembly system.
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6.2 Finite State Automaton Models

This section provides models of finite state automata that operate
autonomously at the molecular scale.

6.2.1 Two-State Two-Symbol Automata

The first DNA model for finite state automata working autonomously at the
molecular scale was invented by E. Shapiro and coworkers in 2001. This model
is based on the DNA Turing machine model developed by P. Rothemund in
1996.

Data Representation

The DNA model of the Shapiro group implements two-state two-symbol
automata. For this, let M be a finite state automaton with input alphabet
Σ = {a, b} and state set S = {s0, s1}. This automaton can have 8 possi-
ble transition rules and the programming of the automaton M amounts to
selecting some of these transition rules and deciding which states are initial
and final. There are 28 = 256 possible selections of transition rules and three
possible selections of both initial and final states (either s0 or s1, or both).

The implementation of these two-state two-symbol automata is composed
of hardware, software, and input. The hardware consists of a mixture of
restriction endonuclease FokI, ligase, and ATP. The enzyme FokI has the
recognition site

5′ − GGATG− 3′

3′ − CCTAC− 5′

and cuts downstream from the recognition site at subsequent positions 9 and
13 leaving sticky ends, for example,

5′ − GGATGTACGGCTCG|CAGCA− 3′

3′ − CCTACATGCCGAGCGTCG|T− 5′

where the vertical bars indicate the cleavage site. The software comprises
8 short double-stranded molecules encoding the transition rules (Fig. 6.15).
The input given by the initial state and an input string is encoded by a
double-stranded molecule (Fig. 6.16). Here, the initial state is always s0 and
each input symbol is encoded by six base pairs (Fig. 6.17). The automaton
also contains two output detection molecules of different lengths (Fig. 6.18).
Each molecule can interact with a distinguished output molecule to form an
output reporter molecule indicating a final state. Because these molecules
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δ(s0, a) = s0 :
3’

GGT 22
GGATGTAC
CCTACATGCCGA 5’

δ(s0, a) = s1 :
3’

GGT 22
GGATGACGAC
CCTACTGCTGCCGA 5’

δ(s0, b) = s0 :
3’

GGT 28
GGATGACG
CCTACTGCGTCG 5’

δ(s0, b) = s1 :
3’

GGT 15
GGATGACGAC
CCTACTGCTGGTCG 5’

δ(s1, a) = s0 :
3’

GGT 28
GGATGA
CCTACTGACC 5’

δ(s1, b) = s0 :
3’

GGT 21
GGATGG
CCTACCGCGT 5’

δ(s1, a) = s1 :
3’

GGT 15
GGATGACG
CCTACTGCGACC 5’

δ(s1, b) = s1 :
3’

GGT 30
GGATGACG
CCTACTGCGCGGT 5’

Fig. 6.15 Encoding of the transition rules in a two-symbol two-state automaton.

have different lengths, the final state can be detected by length separation
such as gel electrophoresis.

Computations

A computation of Shapiro’s automaton begins by mixing the hardware,
software, and input together into one test tube. The computation pro-
cesses the input molecule by a cascade of restriction, hybridization, and
ligation cycles. In each cycle, the molecule is processed by the restric-
tion enzyme to yield a double-stranded molecule encoding the actual
state and the next input symbol. This molecule hybridizes and ligates
with the corresponding transition molecule to yield the next molecule
to be processed. The processing terminates either when a terminator is
reached or no transition rule is applicable. The final molecule anneals to

21

initiator
GGATG
CCTAC 7

a b b terminator
CTGGCT|CGCAGC|CTGGCT|TGTCGC
GACCGA|GCGTCG|GACCGA|ACAGCG 300

Fig. 6.16 Encoding of input string aba.
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(s0, a) : CT GGCT

(s1, a) : CTGG CT

(s0, b) : CG CAGC

(s1, b) : CGCA CG

(s0, t) : TG TCGC

(s1, t) : TGTC GC

Fig. 6.17 Encoding of symbols and states (t stands for terminator).

s0 −D : 161
AGCG

s1 −D : 251
ACAG

Fig. 6.18 Output detection molecules.

an output detector molecule to form an output reporter molecule. This will
reveal whether the input string is accepted or not.

Example 6.11. Consider the finite state automaton M given in Figure 6.19,
with input alphabet Σ = {a, b}, state set S = {s0, s1}, initial state s0, and
final state set F = {s1}. The language of M consists of all strings over Σ

start

��




������s0b 



a
��

������s1 b��

a

��

��



end

Fig. 6.19 Finite state automaton.
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21

initiator
GGATG
CCTAC 7

a b terminator
CTGGCT|CGCAGC|TGTCGC
GACCGA|GCGTCG|ACAGCG 300

s0
a→ s1

GGT 22
GGATGACGAC
CCTACTGCTGCCGA +

(s0, a) b terminator
GGCT|CGCAGC|TGTCGC

|GCGTCG|ACAGCG 300

GGT 22
GGATGACGAC
CCTACTGCTGCCGA

GGCT|CGCAGC|TGTCGC
|GCGTCG|ACAGCG 300

s1
b→ s1

GGT 30
GGATGACG
CCTACTGCGCGGT +

(s1, b)
CAGC|TGTCGC

|ACAGCG 300

GGT 30
GGATGACG
CCTACTGCGCGGT

CAGC|TGTCGC
|ACAGCG 300

s1 −D

251
ACAG +

(s1, t)
TCGC

300

251
TCGC
ACAG 300

Fig. 6.20 Processing of the input string ab by two restriction, hybridization, and
ligation cycles.

with an odd number of a’s. The processing of the input string ab is illustrated
in Figure 6.20. ♦

Implementation Issues

This automaton model operates in a completely autonomous fashion so that
each molecule induces an independent parallel computation. In the imple-
mentation, a computation over 1.5 × 1012 molecules of four symbol inputs
(2.5 pmol) rendered output reporter molecules with about 99% yield pro-
ducing 7.5 × 1011 outputs in 4, 000 s. But each output is the result of five
transitions and so the computing performance is of the order of 109 transi-
tions per second. As each transition consumes two ATP molecules releasing
1.5 × 10−19 J, the energy comsumption rate is about 1.5 × 10−19 × 109 =
1.5× 10−10 J/s.

The downside is the limited complexity of the two-state two-symbol
automaton model (i.e., number of symbols multiplied by number of states).
Any increase in complexity is bound from above by the number of differ-
ent non-palindromic sticky ends. The engineering of a new class of restriction
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endonucleases with longer spacers or longer sticky ends might allow the imple-
mentation of automata with higher complexity.

6.2.2 Length-Encoding Automata

A more general DNA model for finite state automata was recently proposed
by J. Kuramochi and Y. Sakakibara (2006). This model is called length-
encoding because the length of an input string also depends on the number
of the states of the automaton.

Data Representation

Let M = (Σ, S, δ, s0, F ) be a finite state automaton with state set S =
{s0, . . . , sm}. Assume that each symbol a in Σ is encoded by a single DNA
strand σ(a). In this way, each input string x = a1 . . . an over Σ will be
encoded by a single DNA strand consisting of alternating symbol encodings
and spacers,

σ(x) = 5′ − X1 . . . Xmσ(a1)X1 . . . Xmσ(a2) . . .X1 . . . Xmσ(an)− 3′ , (6.5)

where X1 . . .Xm is the spacer sequence (sp) consisting of m nucleotides. More-
over, two supplementary sequences are added at both ends of the input
molecule, one probe for affinity purification with magnetic beads at the 3’
end and primer sequences for PCR at both ends. Thus, the encoded input
string has the following form

5′ − R1 . . . RuX1 . . . Xmσ(a1)X1 . . .Xm . . . σ(an)Y1 . . . YvZ1 . . .Zw − 3′ , (6.6)

where Y1 . . . Yv is a probe, and R1 . . .Ru and Z1 . . . Zw are primers.
The transition rule δ(si, a) = sj , a ∈ Σ, is encoded by the single strand

3′ − Xi+1 . . . Xmσ(a)X1 . . . Xj − 5′ , (6.7)

where X denotes the Watson-Crick complement of the nucleotide X, and σ(a)
refers to the Watson-Crick complement of the DNA sequence σ(a). Further-
more, a PCR primer is put in front of the input strand, and both a PCR
primer and a strand for streptavidin-biotin bonding are placed at the end of
the input strand. The weakness of this model is that s0 must be both initial
and final state due to the encoding of the input string.

Example 6.12. Consider the finite state automaton M in Figure 6.23. Put
σ(a) = CCGG, σ(b) = GCGC and take as spacer the nucleotide A. Then the
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Table 6.1 Encoding of state transitions in finite state automaton (Fig. 6.23).

Transition Encoding

δ(s0, a) = s1 3′ − TGGCCT − 5′

δ(s0, b) = s0 3′ − TCGCG− 5′

δ(s1, a) = s0 3′ − GGCC − 5′

δ(s1, b) = s1 3′ − CGCGT− 5′

string x = abab is encoded as 5′−ACCGGAGCGCACCGGAGCGC−3′, and the state
transitions are encoded as in Table 6.1. ♦

Computations

The molecular automaton operates in three steps: data pre-processing, com-
putation, and output verification. Data pre-processing is accomplished by the
following steps:

• Encode the input string by a corresponding single-stranded DNA molecule,
and state-transitions and supplementary sequences by short pieces of com-
plementary single-stranded DNA.

• Put all single-stranded DNA molecules into a test tube and let comple-
mentary strands hybridize.

• Add ligase into the test tube in order to obtain (partially) double-stranded
DNA molecules.

The formation of double-stranded DNA molecules is based on the observation
that two consecutive transitions δ(si, al) = sj and δ(sj , al+1) = sk encode a
concatenated strand with a complementary spacer in between:

3′ − Xi+1 . . . Xmσ(al)X1 . . . Xmσ(al+1)X1 . . . Xk − 5′ . (6.8)

After pre-processing, an accepted input string will correspond to a completely
double-stranded DNA molecule, while a non-accepted input string will cor-
respond to partially double-stranded DNA.

The computation involves the following steps:

• Denaturate the double-stranded DNA molecules into single-stranded
DNA.

• Extract the single DNA strands containing biotinylated probe subse-
quences by streptavidin-biotin bonding with magnetic beads.

• Amplify the extracted single DNA strands with PCR primers.
• Separate the PCR products by length using gel electrophoresis and detect

the band corresponding to the length of the input. If this band exists, the
input string is accepted; otherwise, it is rejected.
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3’ 5’
primer’ s0

a→ s1 s1
b→ s1 s1

a→ s0 probe’/primer’

5’ 3’
primer sp a sp b sp a probe/primer

Fig. 6.21 Double-stranded molecule encoding the accepted string aba.

Laboratory experiments were carried out for various finite automata with 2
to 6 states for several input strings.

Example 6.13. In view of the previous example, the input string x = aba
encoded by the single DNA strand 5′− ACCGGAGCGCACCGG− 3′ is accepted by
the automaton via the transitions s0

a→ s1, s1
b→ s1, and s1

a→ s0. Anneal-
ing and ligation lead to the corresponding double-stranded DNA molecule
(Fig. 6.21)

5′ − ACCGGAGCGCACCGG− 3′

3′ − TGGCCTCGCGTGGCC− 5′

where primers and probe are not shown. After denaturation, the complemen-
tary strands containing probe and primer (probe’/primer’) are extracted and
amplified, and a band of length equal to the input can be eventually detected.

The input string x = abb encoded by 5′ − ACCGGAGCGCAGCGC − 3′ is
not accepted by the automaton. Annealing and ligation provide a partially
double-stranded DNA molecule, because the last transition s1

b→ s1 ends
with a spacer, while there is no spacer between the last symbol and the
probe (Fig. 6.22). After denaturation, the complementary strands consist-
ing of complementary probe and primer (probe’/primer’) are extracted and
amplified, providing a band of length smaller than the input. ♦

6.2.3 Sticker Automata

A DNA model for finite state machines was recently proposed by the book
authors (2007). It is termed sticker automaton model, because the transition
rules are encoded by short single-stranded DNA molecules referred to as
stickers. This model generalizes the length-encoding model.

3’ 5’
primer’ s0

a→ s1 s1
b→ s1 probe’/primer’

5’ 3’
primer sp a sp b sp b probe/primer

Fig. 6.22 Partially double-stranded molecule encoding the non-accepted string abb.
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Data Representation

Let M = (Σ, S, δ, S0, F ) be a non-deterministic finite state automaton with
state set S = {s0, . . . , sm−1}. Suppose each symbol a in Σ is encoded by a
single DNA strand σ(a). In this way, each input string x = a1 . . . an over
Σ will be encoded by a single DNA strand consisting of alternating symbol
encodings and spacers,

σ(x) = 5′ − I1X0 . . . Xmσ(a1) . . .X0 . . . Xmσ(an)X0 . . . XmI2 − 3′ , (6.9)

where X0, . . . , Xm is the spacer sequence, I1 is the initiator sequence, and I2

is the terminator sequence.
The transition rule δ(si, a) = sj , a ∈ Σ, is encoded by the single strand

3′ − Xi+1 . . . Xmσ(a)X0 . . . Xj − 5′ , (6.10)

where X denotes the Watson-Crick complement of the nucleotide X, and σ(a)
refers to the Watson-Crick complement of the DNA sequence σ(a). Each
initial state si ∈ S0 is encoded by the single strand

3′ − I1X0 . . . Xi − 5′ (6.11)

and each final state sj is encoded by the single strand

3′ − Xj+1 . . .XmI2 − 5′ . (6.12)

The hardware is composed of a single enzyme, Mung Bean nuclease or S1
nuclease, that will be explained later. In contrast to the Shapiro model, the
software does not contain any recognition site for restriction enzymes, and
symbols and states are separately encoded.

Example 6.14. Consider the finite state automaton M in Figure 6.23,
with state set S = {s0, s1}, input alphabet Σ = {a, b}, initial state s0,
and final state set F = {s0}. In view of this automaton, the schematic
encoding of the input string aba (Fig. 6.24), the encoding of initiator and

start
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������s0b 



a
��

��




������s1 b��
a

��

end

Fig. 6.23 Finite state automaton.
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5’ 3’
init a b a term

� � � � � � � �
s0 s0 s0 s0s1 s1 s1 s1

Fig. 6.24 Encoding of input data string aba.

terminator (Fig. 6.25), and the encoding of transition rules (Fig. 6.26) are
illustrated.

Put σ(a) = CCGG and σ(b) = GCGC. Take as spacers the dinucleotide
sequences X0 = AA, X1 = GA, and X2 = AG. Let the initiator sequence I1

and terminator sequence I2 be GG and GC, respectively. The string x = aba
is then encoded as

5′ − GGAAGAAGCCGGAAGAAGGCGCAAGAAGCCGGAAGAAGGC− 3′ .

The initial state is given as 3′ − CCTT − 5′, the final state is referred to as
3′ − CTTCCG− 5′, and the state transitions are encoded as in Table 6.2. ♦

3’ 5’�
s′0

init’
3’ 5’�

s′0
�

s′1

term’

Fig. 6.25 Encoding of initial and final state s0.

δ(s0, a) = s1 : 3’ �
s′0

�
s′1

�
s′0

�
s′1

5’
a′

δ(s0, b) = s1 : 3’ �
s′0

�
s′1

�
s′0

�
s′1

5’
b′

δ(s1, b) = s1 : 3’ �
s′1

�
s′0

�
s′1

5’
b′

δ(s1, a) = s1 : 3’ �
s′1

�
s′0

�
s′1

5’
a′

δ(s0, a) = s0 : 3’ �
s′0

�
s′1

�
s′0

5’
a′

δ(s0, b) = s0 : 3’ �
s′0

�
s′1

�
s′0

5’
b′

δ(s1, b) = s0 : 3’ �
s′1

�
s′0

5’
b′

δ(s1, a) = s0 : 3’ �
s′1

�
s′0

5’
a′

Fig. 6.26 Encoding of all 8 transitions in a two-symbol two-state automaton.
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Table 6.2 Encoding of state transtitions in finite state automaton (Fig. 6.23).

Transition Encoding

δ(s0, a) = s1 3′ − CTTCGGCCTTCT − 5′

δ(s0, b) = s0 3′ − CTTCCGCGTT − 5′

δ(s1, a) = s0 3′ − TCGGCCTT − 5′

δ(s1, b) = s1 3′ − TCCGCGTTCT − 5′

Computation

The molecular automaton operates in three steps: data pre-processing, com-
putation, and output verification. Data pre-processing is accomplished by the
following steps:

• Encode the input string into the corresponding single-stranded DNA
molecule, and state-transitions and supplementary sequences into short
pieces of complementary single-stranded DNA.

• Put all single-stranded DNA molecules into a test tube and let comple-
mentary strands hybridize.

• Add ligase into the test tube in order to obtain (partially) double-stranded
DNA molecules.

The formation of double-stranded DNA molecules is based on the observation
that two consecutive transitions δ(si, al) = sj and δ(sj , al+1) = sk encode a
concatenated strand with a complementary spacer inbetween:

3′ − Xi+1 . . . Xmσ(al)X0 . . . Xmσ(al+1)X0 . . . Xk − 5′ . (6.13)

After pre-processing, an accepted input string will correspond to a complete,
double-stranded DNA molecule, while a non-accepted input string will cor-
respond to partially double-stranded DNA.

The computation is carried out by Mung Bean nuclease or S1 nuclease.
Mung Bean nuclease and S1 nuclease remove single nucleotides in a step-
wise manner from a single-stranded DNA molecule. S1 nuclease can also
occasionally introduce single-stranded breaks into a double-stranded DNA.
Therefore, Mung Bean nuclease is preferable to S1 nuclease for most appli-
cations because it has lower intrinsic activity on duplex DNA. Both enzymes
are able to degrade the single-stranded region in a non-accepted input string.
As a consequence, complete double-stranded DNA molecules corresponding
to accepted input strings will remain intact after enzyme digestion.

Finally, gel electrophoresis can be employed to separate DNA molecules
by size so that accepted input strings can be detected. However, this would
require knowledge of the lengths of the molecules in advance. On the other
hand, the DNA molecule encoding an accepted input string has both an
initiator and terminator sequence. Therefore, PCR may be used to detect
molecules corresponding to accepted input strings.
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3’ 5’
init state s0

a→ s1 s1
b→ s1 s1

a→ s0 term state

5’ 3’
init a b a term

� � � � � � � �
s0 s0 s0 s0s1 s1 s1 s1

Fig. 6.27 Double-stranded molecule encoding accepted string aba.

Example 6.15. In view of the previous example, the input string x = aba is
accepted by the automaton M via the transitions s0

a→ s1, s1
b→ s1, and

s1
a→ s0. Annealing and ligation lead to a complete, double-stranded DNA

molecule (Fig. 6.27).
The input string x = abb is not accepted by the automaton. Annealing

and ligation provide a partially double-stranded DNA molecule, which can
have one of three forms (Figs. 6.28–6.30). ♦

Behavioral Simulation

Consider the sticker automaton model for the finite state machine that
accepts all strings with an even number of a’s over the alphabet {a, b}
(Fig. 6.23). Now this model is implemented by a chemical reacting system
and the time evolution of this system is analyzed by a stochastic simulation

3’ 5’

5’ 3’
init a b b term

� � � � � � � �
s0 s0 s0 s0s1 s1 s1 s1

Fig. 6.28 Non-accepted input string abb: non-existing transition rule δ(s1, b) = s0.

3’ 5’

5’ 3’
init a b b term

� � � � � � � �
s0 s0 s0 s0s1 s1 s1 s1

Fig. 6.29 Non-accepted input string abb: illegal transition rule δ(s0, b) = s0.

3’ 5’

5’ 3’
init a b b term

� � � � � � � �
s0 s0 s0 s0s1 s1 s1 s1

Fig. 6.30 Non-accepted input string aba: non-accepted final state.
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method, Gillespie’s First Reaction Method. To this end, we conduct simula-
tions for the accepted input aba as positive control and the rejected input
abb as negative control.

Subsequently, we denote (partially) double-stranded molecules as words in
which the input molecules are used as building blocks. The input molecules
for aba and abb are represented as I a b a I and I a b b I, respectively.
In view of the input abb, a partially double-stranded molecule consisting of
input molecule and annealed initial state molecule is given by I1 a b b I.
Similarly, a partially double-stranded molecule consisting of input molecule
and annealed final state molecule is denoted as I a b b 2I. Moreover, a
partially double-stranded molecule consisting of input molecule I a b b I
and annealed transition rule s0

a−→ s1 is represented as I 0a1 b b I. Using
this notation, a feasible chain of hybridization reactions for the input aba is
the following:

I a b a I + I1
−⇀↽− I1 a b a I

I1 a b a I + s0
a→ s1

−⇀↽− I10a1 b a I

I10a1 b a I + s1
b→ s1

−⇀↽− I10a11b1 a I

I10a11b1 a I + s1
a→ s0

−⇀↽− I10a11b11a0 I

I10a11b11a0 I + 2I −⇀↽− I10a11b11a02I .

The final product I10a11b11a02I is a double-stranded DNA molecule encoding
the accepted input aba. Other potential products that do not form com-
plete double-stranded DNA molecules are assumed to be degraded by a
nuclease.

In view of the simulations, the symbols and spacers are encoded by oligonu-
cleotides of length of 10 nt. Initial populations of 10,000 molecules per input
molecule and sticker molecule are mixed in a volume of 10−15 litres, which is
held at temperature T = 40◦C. Here perfect and complete matching between
sticker molecules and input molecules is assumed, while products with partial
or overlapping hybridizations are eliminated.

In terms of the accepted input aba, there are more than 1,800 reactions
(including reverse reactions) with a total of 74 distinct reactants (Fig. 6.31).
During the simulation, the concentration of the molecules for the transition
s0

b→ s0 drastically reduces during the first minute of reaction and then
remains constant over time, because this transition is not required for the
assembly of the accepted input. In fact, the concentration of the molecules
for the transition s0

b→ s0 is always higher than that of the accepted duplex
over time. Competitive reactions during simulations provoked some illegal
transition molecules to anneal with input strands forming incomplete double-
stranded molecules, lowering the efficiency of the computation. This effect
can be counteracted by increasing the concentrations of the participating
strands.
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Fig. 6.31 Simulation results of accepted input aba with an initial population of
10,000 molecules per input and sticker molecule (time (min) vs. number of molecules).

In view of the non-accepted input abb, there are more than 1,170 reac-
tions (including reverse reactions) with a total of 67 different reactants
(Fig. 6.32). During the simulation, the most stable molecule turned out to
be I11a00b00b02I. The average number of these molecules after 1 h was about
5,000 out of 10,000. These molecules consumed almost all molecules for the
transition s0

b→ s0, while the molecules for the transitions s1
b→ s1 and

s0
a→ s1 were hardly required. None of the duplexes generated during the

simulation resulted in complete double-stranded DNA molecules.

s0
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b→ s0

s1
b→ s1

expected output

t

x

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60

  

 
 
 
 
 

Fig. 6.32 Simulation results of non-accepted input abb with an initial population of
10,000 molecules per input and sticker molecule (time (min) vs. number of molecules).
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6.2.4 Stochastic Automata

Consider a DNA model for a deterministic or non-deterministic finite state
machine, which contains DNA molecules that individually encode initial
states, final states, and transition rules. The relative molar concentrations
of the molecules encoding initial and final states can be viewed as probabili-
ties of the initial and final states, respectively. Moreover, the relative molar
concentrations of the molecules encoding transition rules can be considered as
conditional probabilities of the transition rules. In this way, the DNA model
implements a stochastic variant of the finite state machine as first proposed
by E. Shapiro and coworkers (2004). The automaton models described in this
section fulfill the above requirements and hence can also implement stochastic
parsers.

6.3 DNA Hairpin Model

The hairpin model was invented by M. Hagiya and coworkers in 1998 to
evaluate Boolean functions. This model was further developed by E. Winfree
(1998) and termed polymerization stop since it extends the 3’ end of hairpin
loops in single-stranded DNA molecules by stopped polymerization. Later,
the hairpin model was modified so that the hairpin loops in single-stranded
DNA can be enzymatically digested. This model allows famous NP-complete
problems by autonomous DNA computations to be tackled.

6.3.1 Whiplash PCR

Today, polymerization stop is known under the notion of whiplash PCR, so
dubbed by L. Adleman.

One-Shot Boolean Expressions

A one-shot Boolean expression or μ-formula is a Boolean expression that is
inductively defined as follows:

• Each Boolean variable is a μ-formula.
• If f is a μ-formula then its negation f is a μ-formula.
• If f and g are μ-formulas, then so are their conjunction fg and disjunction

f + g, provided that f and g do not share a common variable.

In view of the last definition, μ-formulas contain each variable at most once.
For instance, μ-formulas are (x1 + x2)(x3 + x4) and x1x2 + x3 + x4.



208 6 Autonomous DNA Models

These formulas can be evaluated by particularly simple binary decision
diagrams. Such a diagram is given by a labelled acyclic digraph with three
distinguished vertices, b (of indegree 0), e0 and e1 (both of outdegree 0), while
the remaining vertices correspond one-to-one with the variables. A labelled
edge xi

X→ xj , X ∈ {0, 1}, indicates that the variable xi is assigned the
truth value X and xj is evaluated next. The diagram provides for each truth
assignment of the variables a path from the vertex b to one of the vertices e0

or e1 so that the μ-formula evaluates to X if and only if the path reaches the
vertex eX (Fig. 6.33).

Data Representation

Let f be a μ-formula given by a binary decision diagram, and suppose there is
an assignment of truth values to the variables of the μ-formula. The aim is to
evaluate the μ-formula f according to the truth assignment by an autonomous
molecular computation. To this end, truth assignment (data part), μ-formula
(program part), and current state (head) are encoded by one single-stranded
DNA molecule. The data part encodes the truth assignment: Each assignment
xi = X , X ∈ {0, 1}, is encoded by the pair of oligonucleotides (xX

i , xi). The
program part encodes the corresponding binary decision diagram: Each edge
xi

X→ xj , X = 0, 1, is encoded by the pair of oligonucleotides (xj , x
X
i ), and
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Fig. 6.33 Binary decision diagram for the μ-formula f = (x1 + x2)(x3 + x4).
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5’ 3’
data program x1

Fig. 6.34 Encoding of truth assignment (data), μ-formula (program), and initial
state b→ x1.

each edge xi
X→ eY , X, Y ∈ {0, 1}, is encoded by the pair of oligonucleotides

(eY , xX
i ). Finally, the edge b → xi corresponds to the initial state and is

encoded by the Watson-Crick complement xi of the oligonucleotide encoding
the variable xi.

Example 6.16. Consider the μ-formula f = (x1 + x2)(x3 + x4) and the truth
assignment x1 = 1, x2 = 0, x3 = 1, and x4 = 0. The corresponding single-
stranded DNA molecule (Fig. 6.34) has the data part

(x0
4, x4)(x1

3, x3)(x0
2, x2)(x1

1, x1) ,

the program part

(e0, x
1
2)(x3, x

0
2)(e1, x

1
4)(e0, x

0
4)(x4, x

1
3)(e1, x

0
3)(x3, x

1
1)(x2, x

0
1) ,

and the initial state x1. ♦
Moreover, consecutive pairs of oligonucleotides in the data and program

parts are separated by a so-called stopper sequence consisting of nucleotides
whose complement is missing in the polymerization buffer. These sequences
allow termination of polymerization. For instance, the triplet GGG can be used
as a stopper sequence if cytosines are missing in the polymerization buffer.

Evaluation of One-Shot Boolean Expressions

A μ-formula is evaluated according to a given truth assignment by state tran-
sitions implemented via molecular operations. In each transition, the head
reads information alternatively from the data and program part and changes
its state. For this, the single-stranded DNA molecule forms an intramolecular
hairpin structure between the current state and a substrand in the data or
program part. Then the 3’ end of the current state is extended by one symbol
to obtain the next state using polymerization stop.

The transitions are realized by thermal cycles. If the current state is the
Watson-Crick complement of a variable xi, then a hairpin structure is formed
with the encoded variable in the data part, (x0

i , xi) or (x1
i , xi). Polymeriza-

tion extends the molecule with the Watson-Crick complement of the assign-
ment x0

i or x1
i , and the hairpin structure is denaturated (Fig. 6.35). If the

current state is the Watson-Crick complement of an assignment x0
i or x1

i ,
then a hairpin structure is formed with the encoded variable in the pro-
gram part, (xj , x

0
i ) or (xj , x

1
i ). Polymerization extends the molecule with the
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x1
1 x1 x1

x1
1 x1

x1

�

x1
1 x1 x1 x1

1

Fig. 6.35 A thermal cycle in the computation for variable evaluation: The variable
x1 is assigned the value 1 by hairpin formation and polymerization stop.

Watson-Crick complement of the variable xj , and the hairpin structure is
denaturated (Fig. 6.36). Thus, two consecutive thermal cycles are necessary
to assign the truth value to the actual variable in the data part, and to pass
to the next variable in the program part. Hence, the computation evolves in
2m thermal cycles, where m is the length of the path in the binary decision
diagram corresponding to the truth assignment.

Example 6.17. In view of the μ-formula f = (x1 +x2)(x3 +x4) and the truth
assignment x1 = 1, x2 = 0, x3 = 1, and x4 = 0, the traversed path in the

x3 x1
1 x1

1

x3 x1
1

x1
1

�

x3 x1
1 x1

1 x3

Fig. 6.36 A thermal cycle in the computation for state transition: The transition

x1
1→ x3 in the binary decision diagram is performed by hairpin formation and

polymerization stop.
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associated binary decision diagram (Fig. 6.33) is b → x1
1→ x3

1→ x4
0→ e0.

This path corresponds to the following sequence of states extending the 3’
end of the molecule: x1 (initial state), x1

1, x3, x1
3, x4, x0

4, and e0. ♦

Implementation Issues

The evaluation of μ-formulas requires that intramolecular reactions will
exclusively occur. For this, the experimental conditions need to be properly
adjusted so that intramolecular reactions are facilitated, while intermolecu-
lar reactions are non-favorable. This can be achieved by two simple methods:
keeping the concentration of DNA molecules sufficiently low and quickly cool-
ing down DNA molecules during annealing.

In view of consecutive thermal cycles, it is highly probable that the previ-
ous hairpin structure is formed again and therefore no successive transitions
occur. To avoid such situations, the probability of the latest hairpin struc-
ture must be reasonably large compared with the previous ones. This can be
achieved by designing the oligonucleotides so that the latest hairpin structure
has higher stability than the previous ones. Moreover, hairpin formation may
be facilitated by including a spacer sequence between the program part and
the initial state. Otherwise, the hairpin loop might be too short.

Finally, artificial nucleosides such as iso-cytosine may be used for stopper
sequences. In this way, all four nucleotides can be employed for encoding the
data and program part, and the GC-contents will be easier to adjust to an
appropriate level.

6.3.2 Satisfiability

The whiplash PCR model was slightly modified by M. Hagiya and coworkers
(2000) so that the satisfiability problem can be tackled in an autonomous
manner. To see this, let F be a Boolean expression in n variables given in
CNF such as

F = (x2 + x3)(x1 + x2 + x3)(x1 + x2) .

Define a literal string of the Boolean expression F as a conjunction of literals
in F so that one literal per disjunctive clause is selected. For instance, literal
strings of the expression F are

x2x1x1, x3x2x1, and x3x1x2 .

Theorem 6.18. A Boolean expression F in CNF is satisfiable if and only if
there is a literal string of F that does not involve a variable and its negation.
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Proof. Let F = c1 . . . cm be a Boolean expression in CNF, where c1, . . . , cm

are (disjunctive) clauses over the variables x1, . . . , xn. Let L = zi1 . . . zim be
a literal string of F so that zij is a literal occurring in clause cj and L does
not involve a variable and its negation, 1 ≤ j ≤ m. If zij is a variable, assign
to the variable the value 1. Otherwise, assign to the variable the value 0. In
view of the hypothesis on L, this assignment is well-defined. It follows that
each clause ci is satisfied, 1 ≤ i ≤ m, and hence F is satisfied.

Conversely, if each literal string of F involves at least one variable and its
negation, then the expression F is not satisfiable. �
For instance, the literal string x3x1x2 in F fulfills the hypothesis in Theo-
rem 6.18. Thus, in view of the assignment x1 = 1, x2 = 1, and x3 = 0, the
Boolean expression F is satisfiable.

Data Representation

In view of the DNA hairpin model of the satisfiability problem, each literal in
the ith clause of the Boolean expression F is encoded by a double-stranded
DNA molecule with sticky ends. These sticky ends provide links to the i−1th
clause to the left and the ith clause to the right (Fig. 6.37). In terms of this
encoding, double-stranded DNA molecules can be formed by annealing and
ligation of literals, which correspond to the literal strings of F (Fig. 6.38).

Each variable and its negation are encoded by short Watson-Crick com-
plementary DNA strands so that the center contains the sequence

5′ − CCAN1N2N3N4N5|N6TGG− 3′

3′ − GGTN1|N2N3N4N5N6ACC− 5′

where Ni is any nucleotide and Ni denotes its Watson-Crick complement. This
sequence hosts the recognition site of the restriction endonuclease BstXI,
where the cutting sites are indicated by vertical bars.

pbs1 z1

1

�
�

1 z2

2

�
�

2 z3 pbs2�
�

Fig. 6.37 Encoding of literals: A literal zi from the ith clause is encoded by a double-
stranded DNA molecule that contains linker numbers at both sides. Literals from the
first and last clause contain primer binding sites pbs1 and pbs2 as prefix and postfix,
respectively. Arrows indicate 5’ to 3’ direction.

pbs1 z1 1 �
�

z2 2 z3 pbs2

Fig. 6.38 Self-assembled literal string from literals.
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Algorithm Description

The autonomous computation starts by designing an initial test tube consist-
ing of a multiset of double-stranded DNA encoding the literals. The literals
self-assemble by annealing and ligation to yield literal strings. These literal
string DNA molecules are denaturated at low concentration. The resulting
single-stranded DNA molecules are allowed to refold in an intramolecular
manner. This means that literal strings containing a variable and its nega-
tion eventually form hairpins, thanks to the encoding of literals (Fig. 6.39).
This computation is performed solely by controlling the temperature.

The hairpins formed in single-stranded DNA molecules can be digested
by the restriction endonuclease BstXI. For this, notice that the enzyme
BstXI has an optimal incubation temperature of 55◦C. By Theorem 6.18,
the non-digested single-stranded molecules of length km nt correspond to lit-
eral strings that satisfy the Boolean expression, where k is the length of each
literal strand in nt and m is the number of clauses in the Boolean expression.
Thus, length separation of the DNA molecules using gel electrophoresis even-
tually provides literal strands of length km nt. These strands yield a solution
of the satisfiability problem for the Boolean expression.

Implementation Issues

Hagiya and coworkers demonstrated the feasibility of this algorithm for a
Boolean expression with six variables and ten clauses, where each vari-
able was encoded by a strand of 30 bp. A major drawback of the described
autonomous DNA algorithm for solving the satisfiability problem lies in the
required amount of DNA. While common DNA filtering algorithms require
2n molecules for the encoding of the truth value assignments of n variables,
the hairpin model generates 3m strings for m clauses for the 3-SAT problem,
where m can be a multiple of n for harder instances.

6.3.3 Hamiltonian Paths

The hairpin model was used by the authors of the book (2005) to implement
an autonomous version of Adleman’s first experiment. However, the approach

CCAN1N2N3N4N5N6TGG

GGTN1N2N3N4N5N6ACC

zi:

zi:

Fig. 6.39 Single-stranded DNA literal string with a formed hairpin.
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is different from that employed to solve the satisfiability problem: DNA hair-
pin formation is driven by self-annealing of palindromic sequences, which are
rather uncommon in DNA computing models.

Let G be a directed graph and let vs be a vertex in G. The objective
is to find Hamiltonian paths in G that begin with vs as initial vertex. The
following DNA hairpin algorithm solves the Hamiltonian path problem for
the graph G in six steps:

1. Dephosphorylate the single-stranded DNA molecules encoding the initial
vertex.

2. Generate random paths in the graph.
3. Keep only those paths that begin with the initial vertex.
4. Keep only those paths that contain each vertex at most once.
5. Keep only those paths that have n vertices, where n is the number of

vertices of G.
6. Read out Hamiltonian paths (if any).

Data Representation

The information given by the graph G is encoded as in Adleman’s model
(Sect. 5.1.1). However, the encoding of each vertex contains a palindromic
region flanked on each side by thymine nucleotides (Table 6.3). This encoding
has the general form

5′ − T1T2 . . .Tk N1N2 . . . Nl GGCC Nl . . .N2N1 T1T2 . . .Tk − 3′ , (6.14)

where Ti stands for thymine, Nj stands for any nucleotide, and Nj stands
for the Watson-Crick complement of Nj . The middle part of the palindromic
region contains the recognition site of the restriction endonuclease HaeIII,

5′ − GG|CC− 3′

3′ − CC|GG− 5′

Table 6.3 Encoding of the vertices in Adleman’s graph.

Vertex Encoding (22 bp)

v0 5′ − TTTAGCAGTGGCCACTGCTTTT − 3′

v1 5′ − TTTTTGTAGGGCCCTACAATTT − 3′

v2 5′ − TTTTCCATCGGCCGATGGATTT − 3′

v3 5′ − TTTCAGTCAGGCCTGACTGTTT − 3′

v4 5′ − TTTTCAGCTGGCCAGCTGATTT − 3′

v5 5′ − TTTCGACTGGGCCCAGTCGTTT − 3′

v6 5′ − TTTTCTGACGGCCGTCAGATTT − 3′
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where the cutting sites are indicated by vertical bars. The purpose of the
thymine prefix and suffix is to minimize the self-annealing of the DNA strands
encoding the vertices.

Algorithm Description

In the first step of the algorithm, the single-stranded DNA molecules encod-
ing the initial vertex are dephosphorylated with alkaline phosphatase, which
catalyzes the release of 5’-phosphate groups from DNA. Dephosphorylating
these strands will guarantee that they will not serve as targets for lambda
exonuclease, which only recognizes 5’-phosphorylated termini.

In the second step, a combinatorial path library is generated by anneal-
ing and ligation of all DNA strands encoding the vertices and edges as in
Adleman’s approach.

The third step employs lambda exonuclease. This enzyme acts in the 5’ to
3’ direction, catalyzing the removal of strands with 5’-phosphate group. Thus,
lambda exonuclease digests all strands of edges and strands of vertices that
do not begin with the initial vertex dephosphorylated in the first step. The
remaining non-digested molecules are single DNA strands that correspond
to paths beginning with the initial vertex (Fig. 6.40). These single-stranded
DNA molecules eventually form hairpins if they correspond to paths with
two or more repeated vertices. The partially double-stranded region of such
a hairpin structure contains the HaeIII recognition site.

� � � �
v0 v1 v2 v3

P P P

���
PPP

e01 e12 e23

� � � ����
P

v0 v1 v2 v3

� � � �
v0 v1 v2 v3

Fig. 6.40 Generation of initial test tube: First, random paths in the graph are
formed via annealing, here (v0, v1, v2, v3). The 5’-phosphate group of the single-
stranded DNA molecules associated with the initial vertex v0 was removed before-
hand by alkaline phosphatase. P stands for a 5’-phosphate group. Second, ligase
bonds together single-stranded DNA molecules to provide double-stranded molecules
that encode paths in the graph. Third, lambda exonuclease selectively digests all 5’-
phosphorylated DNA strands, leaving only those single-stranded DNA molecules that
begin with the initial vertex.
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TTGTAGGG|CCCTACAA

AACATCCC|GGGATGTT

Fig. 6.41 Single-stranded DNA corresponding to a path with two occurrences of
vertex v1 (Table 6.3) and formed hairpin.

In the fourth step, the restriction endonuclease HaeIII is added to the
solution that cuts within the partially double-stranded region of all DNA
strands that have formed hairpins (Fig. 6.41). The remaining non-digested
single-stranded DNA will correspond to paths in the graph which contain
each vertex at most once. Here an issue that needs to be addressed further is
the optimal length of the thymine pre- and suffixes. It depends on the length
of the palindromic region and should be designed so that self-annealing of
vertex strands can be avoided. Moreover, the competition between intra- and
interstrand annealing can be reduced by designing vertex strands with longer
palindromic regions that do not separate when two different single strands
collide.

In the fifth step, the remaining molecules are separated by size via gel
electrophoresis. To this end, notice that there are no molecules longer than
(7 × 22 =) 154 nt, while most DNA fragments of the reaction stay at the
bottom of 22 nt. The 154 nt fragment indicates that there is a solution of the
seven-vertex Hamiltonian path problem. Finally, the 154 nt fragment needs
to be analyzed to provide the actual order of the vertices in the solution
molecules, as in Adleman’s experiment.

The above procedure was successfully implemented in the laboratory for
Adleman’s graph with initial vertex v0 (Table 6.4). It appears that this
method can be scaled up and automated to solve an instance of the Hamil-
tonian path problem with 20 cities. This estimate is in accordance with the
largest instance (20 variables) of the SAT problem solved by DNA computing
(Sect. 5.2.4).

6.3.4 Maximum Cliques

The maximum clique problem can be solved by a DNA hairping algorithm
that is quite similiar to the previous one. This algorithm proposed by the
authors (2005) uses the same hardware (enzymes) as that for the Hamiltonian
path problem, but the encoding of the graph considered is different.

Let G be a graph. The maximal clique problem for G can be solved by the
following DNA hairpin algorithm:

1. Generate random subgraphs of G.
2. Keep only those subgraphs that provide cliques in G.
3. Detect maximal cliques in G.



6.3 DNA Hairpin Model 217

Table 6.4 Experimental protocol for DNA hairpin experiment of Hamiltonian paths.
After steps 2 and 4, DNA samples were purified via nucleotide purification kit and
soluted in 50 μl extraction buffer, and 8% polyacrylamide gel was run at 70 V.

Step 1: Dephosphorylation of Initial Vertex

v0 strand (200 μM) 10 μl
alkaline phosphatase buffer 10× 2 μl
alkaline phosphatase 2 μl
water 6 μl
Incubate mixture at 37◦C for 3 h
Denaturate enzyme at 85◦C for 16 min.

Step 2: Linking

v0 strand (100 μM) 5 μl
every other vertex strand (200 μM) 2.5 μl
each edge strand (400 μM) 2.5 μl
ligase reaction buffer 10× 6 μl
water 8 μl
T4 DNA ligase 5 μl
Incubate mixture at 22◦C for 3 h
denaturate enzyme at 85◦C for 10 min.

Step 3: Exonuclease Digestion

DNA solution (from step 2) 30 μl
reaction buffer 10× 4 μl
water 4 μl
lambda exonuclease 2 μl
Incubate mixture at 37◦C for 45 min
denaturate enzyme at 80◦C for 20 min.

Step 4: Hairpin Digestion

DNA solution (from step 3) 40 μl
reaction buffer 10× 6 μl
BSA 100× 0.6 μl
water 10.4 μl
HaeIII 3 μl
Incubate mixture at 37◦C for 45 min
cool down to 4◦C to stop reaction.

In order to apply the hairpin model, we pass from the graph G to its
complementary graph G′ (Fig. 6.42), and observe that the cliques in G are in
one-to-one correspondence with the independent sets in G′. In particular, the
maximum cliques in G correspond to the maximal independent sets in G′. In
view of this correspondence, the above algorithm also solves the maximum
independent set problem for G′:

1. Generate random subgraphs of G′.
2. Keep only those subgraphs that provide independent sets in G′.
3. Detect maximal independent sets in G′.
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Fig. 6.42 A graph G and its complement G′.

Data Representation

The information given by the graph G′ is represented by an adjacency list,
which provides for each vertex the sequence of incident edges.

Example 6.19. The graph G in Figure 6.42 has the adjacency list given in
Table 6.5. ♦

The adjacency list of G′ is encoded by single-stranded DNA molecules
called vertex templates. Each vertex template corresponds to a vertex v in G′

and consists of initial linker l1, encoding of v, encodings of all edges incident
with v, and final linker l2 (Fig. 6.43). Moreover, all vertices and edges in G′

are encoded in palindromic form, containing in the center the recognition site
of the restriction endonuclease HaeIII,

5′ − GG|CC− 3′

3′ − CC|GG− 5′

where the cutting sites are indicated by vertical bars (Table 6.6). Further-
more, all vertex templates are of the same length. For this, there is a con-
stant non-palindromic encoding sequence called spacer (sp) used as a filler.
Finally, for each vertex template, part of its concentration is treated with alka-
line phosphatase, which dephosphorylates these strands by removing the 5’-
phosphate group. Notice that a dephosphorylated vertex template cannot be

Table 6.5 Adjacency list of graph G (Fig. 6.42).

Vertex List of Edges

v1 (v1v2)
v2 (v1v2, v2v3, v2v4, v2v5)
v3 (v2v3, v3v4, v3v5)
v4 (v2v4, v3v4, v4v5)
v5 (v2v5, v3v5, v4v5)
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Fig. 6.43 Vertex templates of graph G′.

a substrate for lambda exonuclease, which only recognizes 5’-phosphorylated
termini.

Algorithm Description

The first step of the algorithm forms subsets of vertices in G′ and thus sub-
graphs of G′ by linking vertex templates. To this end, there is a single-
stranded DNA molecule called bridge (br) that complements concatenated
linkers l1 and l2:

l2|l1 5′ − TCTACGCT|CGCAATTC− 3′

br 3′ − AGATGCGA GCGTTAAG− 5′ .
(6.15)

Table 6.6 Encoding of the adjacency list of graph G′.

Region Encoding

v0 5′ − ACTGACGGCCGTCAGT − 3′

v1 5′ − TACGATGGCCATCGTA − 3′

v2 5′ − GTGAGAGGCCTCTCAC − 3′

v3 5′ − CGTTCAGGCCTGAACG − 3′

v4 5′ − AGCTTCGGCCGAAGCT − 3′

v1v3 5′ − TCACCTGGCCAGGTGA − 3′

v1v4 5′ − GATCTGGGCCCAGATC − 3′

v1v5 5′ − CTGTAAGGCCTTACAG − 3′

l1 5′ − CGCAATTC − 3′

l2 5′ − TCTACGCT − 3′

br 5′ − GAATTGCGAGCGTAGA − 3′

sp 5′ − TAAATAAATAAATAAA − 3′
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l1 v1 v1v3 v1v4 v1v5 l2 l1 v3 v1v3 sp sp l2
5’ 3’

br
3’ 5’

Fig. 6.44 Linked vertex templates for the vertices v1 and v3.

An excess of bridges is added to the solution of vertex templates. By annealing
and ligation, partially double-stranded molecules are formed that correspond
to subsets of vertices in G′; more precisely, multi-subsets as each vertex can
occur more than once (Fig. 6.44). Afterwards, lambda exonuclease is added to
the solution. This enzyme catalyzes the removal of strands with 5’-phosphate
group. Thus, lambda exonuclease digests all bridges and all linked vertex tem-
plates whose first vertex template is phosphorylated. That is, the remaining
non-digested molecules are single DNA strands that are linked vertex tem-
plates beginning with a non-phosphorylated vertex template.

In the second step, the linked vertex templates eventually form hairpins
because of the palindromic encoding of the vertices and edges. That means
if a linked vertex template contains a vertex or an edge at least twice, then a
corresponding hairpin could be formed. These hairpin structures contain the
recognition site of HaeIII and thus will be digested. Hence, the non-digested
single DNA strands correspond to subsets of vertices in G′ (no longer multi-
subsets) that are non-adjacent by an edge in G′. These subsets correspond
to independent sets in G′ and therefore to cliques in G.

In the final step, the longest non-digested single DNA strands correspond
to maximal independent sets in G′ and therefore to maximum cliques in G.
These strands are detected by gel electrophoresis.

The above routine was successfully implemented in the laboratory for
the graph G shown in Figure 6.42. The experiments made use of dephos-
phorylated vertex templates for v1 and v2 yielding the maximum clique
{v2, v3, v4, v5}.

6.3.5 Hairpin Structures

This section formalizes the notion of DNA hairpin secondary structure and
examines its basic properties, based on work of L. Kari and coworkers (2006).

Let Σ be an alphabet. Let φ : Σ∗ → Σ∗ be a morphic or anti-morphic
involution, and let k > 0 be an integer. A string x in Σ∗ is φ-k-hairpin-free or
simply hp(φ, k)-free if x = uyvφ(y)w for some u, v, w, y ∈ Σ∗ implies |y| < k.
It follows that all strings of length less than 2k are hp(φ, k)-free.

Let hpf(φ, k) denote the set of all hp(φ, k)-free strings over Σ, and let
hp(φ, k) denote the complement of hpf(φ, k) in Σ∗. Clearly, hpf(φ, k) is a
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subset of hpf(φ, k + 1) for all k > 0. A language L over Σ is termed φ-k-
hairpin-free or simply hp(φ, k)-free if L is a subset of hpf(φ, k). It follows
that a language L over Σ is hp(φ, k)-free if and only if L∩Σ∗yΣ∗φ(y)Σ∗ = ∅
for all strings y of length at least k.

Example 6.20. Let Δ be the DNA alphabet, and let φ denote the reverse com-
plementarity on Δ∗. The hp(φ, 1)-free strings over Δ cannot contain Watson-
Crick pairs, that is,

hpf(φ, 1) = {A, C}∗ ∪ {A, G}∗ ∪ {T, C}∗ ∪ {T, G}∗ .

On the other hand, the string AATT = AAφ(AA) belongs to hpf(φ, 3), but not
to hpf(φ, 2). ♦
Theorem 6.21. The languages hpf(φ, k) and hp(φ, k) are regular.

Proof. Let φ be a morphic involution on Σ∗. Consider the non-deterministic
finite state automaton in Figure 6.45, which accepts all strings of the form
uyvφ(y)w with |y| ≥ 3. This automaton can be easily modified so that it
accepts all strings of the shape uyvφ(y)w with |y| = 3. The automaton is
similarly defined if φ is an anti-morphic involution on Σ∗. A union of such
automata yields a non-deterministic finite state automaton that accepts all
strings of the form uyvφ(y)w so that |y| < k. Thus the language hpf(φ, k) is
regular. It follows that its complement hp(φ, k) is also regular. �

Theorem 6.22 (Hairpin Freedom Problem). The problem of deciding
whether a regular language is hp(φ, k)-free is solvable in linear time.

Proof. Let L be a regular language over Σ. By definition, L is hp(φ, k)-free
if and only if L ∩ hp(φ, k) = ∅. The latter problem is solvable in O(|Mk| ×
|M |) time (i.e., in linear time in |M |), where M is a finite state automaton
accepting L and Mk is a finite state automaton accepting hp(φ, k). �
Theorem 6.23 (Maximum Hairpin Freedom Problem). The problem
of deciding whether for an hp(φ, k)-free language L and a regular language
L′, there is a string w ∈ L′ \ L so that L ∪ {w} is hp(φ, k)-free is solvable in
time proportional to the acceptance of L times the acceptance of L′.

start
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Fig. 6.45 Schematic representation of a non-deterministic finite state automaton for
strings with hairpins of length at least 3.
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Proof. Consider the word problem of deciding whether there is a string w ∈
hpf(φ, k) so that w �∈ L and w ∈ L′. This problem is decidable in time
O(|Mk| × |M | × |M ′|), where M is a finite state automaton accepting L, M ′

is a finite state automaton accepting L, and Mk is a finite state automaton
accepting hpf(φ, k). �

6.4 Computational Models

This section describes several autonomous DNA computational models that
hold promise for performing complex information processing and control tasks
in specific environments.

6.4.1 Neural Networks

First, the construction of a DNA model for neural networks based on the
work of A. Mills, Jr. (2002) will be addressed.

Artificial Neural Networks

Artificial neurons with binary input and binary output were first devised
by W. McCulloch and W. Pitts in 1943. A more general artificial neuron,
called perceptron, was developed by F. Rosenblatt in 1958. A perceptron is a
processing unit with n input signals and one output signal (Fig. 6.46). The
perceptron linearly combines the input signals xi via real-valued weights wi,
1 ≤ i ≤ n, to yield the action potential
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Fig. 6.46 Perceptron.
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h =
∑

i

wixi + b , (6.16)

where b is a bias, a constant term that is independent of any input value.
The action potential h is transformed by an activation function f to provide
the output signal

y = f(h) . (6.17)

A perceptron basically implements a binary classifier. To see this, consider
the simplest activation function providing the sign of the action potential h
so that the input x is classified as either a positive or negative instance. The
bias gives the perceptron a base level of activity. If the bias b is negative,
then the action potential must have a positive value greater than b so that
the input is classified as positive instance, and vice versa. Another common
activation function is the S-shaped sigmoid function f : h �→ 1/(1+exp(−h))
(Fig. 6.47).

A multilayer perceptron (MLP) is a network of perceptrons (Fig. 6.48). An
L-layered MLP consists of L + 1 ordered layers, the first layer is the input
layer, the last layer the output layer, and the layers in between the hidden
layers. The input layer simply consists of data storage units. Each non-input
layer consists of a set of neurons, which receive their inputs from neurons
of the previous layer and send their outputs to the subsequent layer. In this
way, the input signal propagates through the network layer by layer from
the input to the output layer. MLPs are typically fully connected (i.e., each
neuron of one layer is connected via axons to all neurons in the subsequent
layer). By choosing the right weights (or strengths of the axon connections),
any continuous function can be approximated by an MLP with any given
accuracy provided that a sufficient number of hidden neurons are available,
as shown by K. Hornik and coworkers (1989).
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Fig. 6.47 Sigmoid function.
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Fig. 6.48 Two-layered MLP.

MLPs are trained rather than programmed to carry out an information
processing task. An MLP is trained using training samples whose classifi-
cations are known in advance. These samples are presented to the MLP.
Each time the MLP gives the right (wrong) answer, it is either left invariant
or reinforced (punished). There are several ways to reinforce or punish an
MLP: changing weights (back propagation), adding or deleting connections,
and adding or deleting hidden neurons. An MLP should be able to general-
ize from the training samples. To this end, the training samples should not
be taught to the highest degree of accuracy. This requires that the number
of training iterations must be carefully chosen. Otherwise, the MLP will be
unable to extract important features.

DNA Perceptron Model

A neural network can be implemented by using a set of DNA oligonucleotides.
In view of the perceptron, each input signal xi and the output signal h are
encoded by DNA oligonucleotides, and each weight or axon connection wi

is encoded by a partially double-stranded DNA molecule, 1 ≤ i ≤ n. An
axon-representing molecule is formed by using oligonucleotides that encode
the desired input and output signals and temporarily attaching them to each
other by a complementary linker oligonucleotide as in Adleman’s first exper-
iment. The two oligonucleotides are subsequently joined permanently by lig-
ase. Finally, the output end of the linked oligonucleotide is protected from
hybridization on its output end by extending the linker oligonucleotide along
the output oligonucleotide via DNA polymerase (Fig. 6.49).

The network is operated by mixing input oligonucleotides and axon-
representing oligonucleotides together and exposing this mixture to the
action of DNA polymerase in a suitable reaction buffer. In this way, out-
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�

d) . . .
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Fig. 6.49 A molecule representing an axon is formed in a preparation step. a Watson-
Crick complementary input molecule with prefix p annealing to the linker, part of the
Watson-Crick complementary output molecule, and linker molecule. b Annealing. c
Ligation. d DNA polymerase extension.

put oligonucleotides are released by the DNA polymerase from those axon
molecules that were primed on their output ends (Fig. 6.50).

A perceptron is implemented in a way that the input signals, axon con-
nections, and output signals are represented by concentrations of the corre-
spondingly encoded DNA molecules. In this way, the action potential (6.16)
is to be interpreted as an equation of concentrations,

xia)

. . .
p xi

h

b) . . .
p xi

h xi

. . .
�

c) . . .
p xi

h xi

h

Fig. 6.50 Steps in forming an output molecule. a Given input molecule xi and axon
molecule formed in the preparation step. b Input molecule anneals to a corresponding
axon molecule primed on the output end. c Resulting molecule is exposed to DNA
polymerase leading to the release of the output oligonucleotide.
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[h] =
∑

i

[wi][xi] + [b] . (6.18)

Moreover, the activation (6.17) is to be considered as a binary classifier so
that a high (low) concentration of the action potential is classified as positive
(negative) instance,

y = f([h]) . (6.19)

This DNA perceptron model can be generalized to multi-layered networks by
designing each layer individually and taking the output of one layer as input
of the subsequent layer.

Gene Expression Profiling Diagnosis

Molecular diagnostic techniques for the classification of tumor cells are usu-
ally based on gene activity. The level of gene activity is represented by the
concentrations of mRNA. However, RNA is not a very stable molecule and
thus mRNA is converted by reverse transcriptase into complementary DNA
(cDNA), which is more robust. The profile of active genes is then repre-
sented by their cDNA concentrations, which can be measured by using a
DNA microarray. For this, the cDNA is stained with fluorescent dye and
allowed to hybridize with an array of tens of thousands of DNA oligonu-
cleotides representing many genes. The array is then exposed to light that
excites the dye. The fluorescent intensities of the various cDNA strands are
measured and compared with the intensities of the various cDNA oligonu-
cleotides from a library of known cells. This approach allows the differentia-
tion of pathological strains with indistinguishable phenotypes, which can be
essential for determining the best therapy. The microarray framework is valu-
able for research, but for clinical use a simpler technique that gives answers
on a shorter time-scale is required. MLPs are useful for classifying, generaliz-
ing and predicting based on a limited data set. Thus, MLPs might be helpful
to tackle the expression profiling problem once the rules were established by
careful laboratory and clinical studies.

6.4.2 Tic-Tac-Toe Networks

This section describes the construction of a DNA molecular automaton based
on the work of M. Stojanovic and D. Stefanovic (2003), which encodes a
version of the game of tic-tac-toe and interactively competes against a human
opponent.
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Molecular Logic Gates

The underlying molecular automaton is a Boolean network of logic gates
that are made of allosterically modulated deoxyribozymes, and input and
output are given by oligonucleotides. The logic gates are based on molecular
beacons introduced by S. Tyagi and F. Kramer (1996), which are oligonu-
cleotide probes able to report the presence of specific DNA in homogenous
solutions. Molecular beacons are hairpin-shaped molecules with a quencher
(R) at the 3’ end and a fluorosphore (F ) at the 5’ end. These molecules
are non-fluorescent as the loop keeps the quencher close to the fluorophore.
However, when the oligonucleotide probe sequence in the loop hybridizes to a
target DNA molecule forming a rigid double helix, the quencher is separated
from the fluorophore restoring fluorescence (Fig. 6.51).

Deoxyribozymes are nucleic acid catalysts made of deoxyribonucleic acid.
Examples of deoxyribozymes are phosphodiesterases, which cleave other
oligonucleotides with shorter products as output, and ligases, which combine
two oligonucleotides into a larger product. The molecular gates are based
on phosphodiesterase E6, which cleaves an input fluorogenic oligonucleotide
upon binding and releases the cleft oligonucleotides as output. This produces
an increase in fluorescence by fluorescein (F ) as the quencher (R) is separated
(Fig. 6.52).

The YES gate is comprised of a deoxyribozyme E6 module and a hairpin
module complementary to input oligonucleotide x. If the input oligonucleotide
hybridizes to the hairpin module, the gate enters the active state, increasing
fluorescence (Fig. 6.53).

The NOT gate is constructed by extending the non-conserved loop of the
E6 core with a hairpin structure that is complementary to input oligonu-
cleotide x. If the input oligonucleotide hybridizes to the hairpin module, the
gate enters the inactive state not increasing fluorescence (Fig. 6.54).

The AND gate is obtained from the E6 core module by extending both
ends with hairpin modules, one complementary to input oligonucleotide x
and the other complementary to input oligonucleotide y (Fig. 6.55).

The AND-NOT gate realizes the Boolean function (x, y) �→ xy and is
derived from the E6 core module by extending one end with a hairpin module,

RFR

F

+

Fig. 6.51 Operation of molecular beacon.
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R F

F

Fig. 6.52 Activity of phosphodiesterase E6. Imaginary: open circle = A, black circle
= T, gray circle = C, and shaded circle = G.

x

Fig. 6.53 YES gate.

x

Fig. 6.54 NOT gate.
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y

x

Fig. 6.55 AND gate.

which is complementary to input oligonucleotide x, and extending the loop of
the E6 core with a hairpin structure complementary to input oligonucleotide
y (Fig. 6.56).

The AND-AND-NOT gate implements the Boolean function (x, y, z) �→
xyz and is derived from the E6 core module by extending both ends with
hairpin modules, one complementary to input oligonucleotide x and the other
complementary to input oligonucleotide y, and extending the loop of the
E6 core with a hairpin structure complementary to input oligonucleotide z
(Fig. 6.57).

y

x

Fig. 6.56 AND-NOT gate.
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z
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x

Fig. 6.57 AND-AND-NOT gate.

Game Play

Tic-tac-toe is a two-player game played on a grid of 3×3 squares (Fig. 6.58).
The two players take turns claiming squares and marking them, X for one
player and O for the other. No player can claim a square that has already
been claimed. A player wins the game if she claims three squares in a row,
column, or diagonally. The game ends with a draw if there is no winner
after the players have claimed all nine squares. Wins or draws are favorable
outcomes of the game.

A game-winning strategy is illustrated in Figure 6.59. This strategy sug-
gests that the machine goes first placing the mark into the center (square 5),
and by symmetry, the (human) opponent places the mark either into square
1 or 4. No further restrictions are made on the subsequent turns. There are
nineteen games: ten end in victory for the machine after two moves of the
human, seven after three moves, one after four moves, and one game is a
draw.

The game strategy is implemented by Boolean functions that correspond
one-to-one to the squares. The variables are associated with the opponent’s
plays so that a variable is assigned the value “true” if the human places a
mark into the corresponding square. A function evaluates to “true” when the

1 2 3

4 5 6

7 8 9

Fig. 6.58 Game board.
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Fig. 6.59 Game strategy: The machine goes first. Each node is labelled by the
squares marked by the human, and each edge is labelled i/o(n), where i is the mark
of the human, o is the response of the machine, and n is an integral edge label.

machine can place a mark into the square corresponding to this function.
This requires that f5 = 1 so that at the beginning of the game, the machine
can place a mark into square 5.

For instance, the machine places a mark into square 2 on the edges 17, 18,
and 23 (Fig. 6.59). Thus, f2 = x4x9x7 + x4x9x8 + x1x6x7. However, these
functions are ambiguous (i.e., two or more functions can evaluate to “true”
during the game while the strategy always provides a single outcome). These
ambiguities can be resolved by introducing appropriate negated variables into
the functions. This leads to a set of logically equivalent functions in which
all monomials can be realized by molecular gates:

f1 = x4

f2 = x6x7x2 + x7x9x1 + x8x9x1

f3 = x1x6 + x4x9

f4 = x1

f5 = 1
f6 = x1x2x6 + x1x3x6 + x1x7x6 + x1x8x6 + x1x9x6

f7 = x2x6x7 + x6x8x7 + x6x9x7 + x2x9x1

f8 = x7x9x4

f9 = x7x8x4 + x2x4x9 + x3x4x9 + x4x6x9 + x4x7x9 + x4x8x9 .



232 6 Autonomous DNA Models

In Vitro Gaming

The game is played in the 3 × 3 wells of a 386-well plate termed MAYA,
which hosts 24 types of deoxyribozymes in nine wells. There are two YES
gates, two AND gates, and 19 ANDANDNOT gates; and one permanently
active deoxyribozyme in the center square, with a concentration of 200 nM of
the YES gates in wells 1 and 4, and a concentration of 150 nM of the other
gates. The game starts by adding a divalent metal ion cofactors, like Mg2+

ions, to all wells, which activates the deoxyribozymes. MAYA places the first
mark into the center square and thus there are eight input oligonucleotides,
one for each of the remaining squares. The input oligonucleotides are 15- or
17-mers that exhibit no strong secondary structures. The opponent makes a
move by adding an input oligonucleotide to all wells setting the correspond-
ing logical variable to “true”. This addition triggers an output response by
the machine given by the greatest increase in fluorescence. The output inter-
face is a fluorescence plate reader, and fluorogenic activity is detected within
15 min from the time the activating inputs were added. For this, the gates are
optimized to achieve a ratio of at least 10:1 between initial rates of cleavage
in the active versus inactive states. However, the quantitive characteristics of
gates may vary for each individual gate, depending on the structure of input
oligonucleotides and the concentration of individual components of the reac-
tion. The authors reported that in a total of more than one hundred games
played, no erroneous moves have been detected.

The deoxyribozyme-based automaton MAYA consists of individual bio-
molecular building blocks that behave as feed-forward circuits carrying out
Boolean computations without human interface-operated steps. The output
of one gate may be used as the input of another gate. Hence, automata are
conceivable that can carry out more complex tasks. Those automata might be
useful in synthetic biology to learn about genetic, regulatory, and metabolic
networks.

6.4.3 Logic Circuits

This section addresses the construction of enzyme-free DNA logic circuits
based on the work of E. Winfree and coworkers (2006), which embodies basic
digital design principles such as Boolean logic, cascading, restoration, and
modularity. The constructions rely on DNA reactions that can be driven
without enzyme or (deoxy)ribozyme catalysis, first studied by A.J. Turber-
field and coworkers (2003).

Toehold Kinetics

The key phenomenon for the implementation of DNA logic gates is strand
displacement via branch migration mediated by toeholds (Fig. 6.60). For this,
consider the reaction
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Fig. 6.60 Strand displacement by branch migration.

PS + S → SS + P . (6.20)

This reaction is thermodynamically favorable, because of the additional base
pairs that are formed. The kinetics of this reaction depends on the length of
the single-stranded overhang in PS, known as a toehold. The single strand
S initially binds to the partial double strand PS at the toehold. The longer
the toehold, the more likely the reaction will enter a branch migration phase
prior to dissociation. Branch migration comprises isoenergetic steps in which
the final base pair of P to S is replaced by a base pair of S to S. When the
branch point reaches the end of the complex, the strand P dissociates. This
step is irreversible as there is no toehold for P . This biochemical reaction is
accomplished by DNA without the assistance of any enzymes.

DNA Logic Gates

DNA logic gates are entirely determined by base pairing and breaking, and
the logical values 0 and 1 are represented by low and high concentrations,
respectively. Each logic gate consists of one or more gate strands and one
output strand. The output strand serves either as an input to a downstream
gate or is modified with a dye label to provide the readout in a fluorescence
experiment.

An AND gate is given by a partially double-stranded DNA molecule con-
sisting of three DNA strands, Eout (57 nt), F (60 nt), and G (36 nt). The
gate contains three toehold binding regions (6 nt), one at the 3’ end of G,
one between Eout and G, and one inside of F . The input strands Fin and Gin

(36 nt) are complementary to the respective strands F and G within the gate.
When input strands are given into the solution containing the gate, the com-
putation is initiated (Fig. 6.61). The input strand Gin binds to the toehold
at the 3’ end of G and displaces the first gate strand by toehold kinetics.
This exposes the toehold for the subsequent input strand and releases an
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Fig. 6.61 Implementation of AND gate by toehold kinetics.

inert double-stranded waste product. A similar process takes place for the
second input Fin. Hence, an output strand is released if and only if both
input strands are present. The output strand may serve as an input strand
for another logic gate.

A single-input AND gate can be used as a translator gate, which converts a
signal encoded by the input strand to a signal encoded by the output strand.

An OR gate can be implemented by three translator gates so that two
translator gates take the input signal and release the same output signal,
while the third translator gate uses such an output signal to provide the
output signal of the gate. Hence, an output strand is released if and only if
at least one input strand is present.

A NOT gate consists of a translator gate and an inverter strand. If the
input strand is present, the inverter strand preferably hybridizes to it. Oth-
erwise, the inverter strand triggers the translator gate and thus provides an
output signal. Inverter strands must be simultaneously added to the input
of the circuit and therefore NOT gates are restricted to the first layer of the
circuit. By De Morgan’s law, this is sufficient to realize arbitrary Boolean
functions.

DNA Logic Circuits

The described DNA gates provide a full set of logic gates using short oligonu-
cleotides as input and output. As input and output are of the same type, the
gates can be organized in cascades to implement logic circuits.
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Signal restoration eventually becomes necessary when a gate fails to pro-
duce enough output strands when triggered, or when a gate leaks by sponta-
neous release of an output strand. The first type of error requires increasing
a moderate output amount to a full activation level, while the second type of
error requires decreasing a small output amount to a negligible level. For this,
a signal restoration module providing thresholding and amplification should
be incorporated into large circuits at multiple intermediate points to ensure
that the digital signal representation remains stable.

Signal thresholding can be realized by threshold gates, which are three-
input AND gates with identical first and third input strands. A small amount
of input will cause most gates to lose only their first and second gate strands
and thus release no output, while input concentrations two times higher than
the concentration of threshold gates will cause most gates to produce output.
The threshold gate’s concentration sets the threshold for a sigmoidal non-
linearity. But the threshold gate’s output cannot exceed half the input signal
and thus subsequent amplification is necessary.

Signal amplification can be based on feedback logic. An amplifier gate is a
two-gate feedback circuit amplifying the fluorescence output signal without
producing an output strand. The circuit consists of two translator gates so
that the output of the first acts as input for the second and the output of the
second acts as input for the first. This fluorescence amplifier linearly amplifies
the output signal with time.

The overall approach is modular and scalable and allows interfacing with
predesigned subcircuits. The design was experimentally tested by a larger cir-
cuit of eleven gates, with six inputs given by DNA analogs of mouse microR-
NAs. The circuits may work well with RNA inputs instead of DNA inputs,
because the gate functions solely depend on Watson-Crick complementarity.
Potential applications of DNA logic circuits are to control nanoscale devices
in vitro and to detect complex expression patterns in situ.

6.4.4 Turing Machines

This section describes an autonomous DNA Turing machine based on the
work of J.H. Reif and coworkers (2005). This DNA nanomechanical device
simulates the general operation of an arbitrary 2-state 5-symbol Turing
machine, whose head moves either to the left or to the right in every tran-
sition. Thus, the autonomous DNA Turing machine can implement the uni-
versal Turing machine given in Example 2.33.

Data Representation

The autonomous Turing machine consists of two major components: two
parallel arrays of dangling molecules tethered to two rigid tracks (Fig. 6.62).
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Fig. 6.62 Schematic illustration of an autonomous DNA Turing machine.

The two rigid tracks can be implemented as a rigid DNA lattice, which can be
made from a diverse set of branched DNA molecules such as DX molecules.

A dangling molecule is a double-stranded DNA molecule with sticky
ends, one of which is linked to the track by a flexible single strand exten-
sion. The upper and lower arrays of dangling molecules are called head
molecules , denoted by H , and symbol molecules, denoted by S, respectively.
The dangling molecules can move rather freely so that a dangling molecule
can interact with its neighboring dangling molecules along the same track or
the dangling molecule immediately below or above it. This can be achieved
by the rigidity of the tracks and the proper spacing of the dangling molecules.
The array of head molecules represents the moving head of the Turing
machine, while the array of symbol molecules provides the data tape of the
Turing machine.

The design involves another type of molecules, floating molecules, which
freely float in the solution. Floating molecules are double-stranded DNA
molecules with one sticky end, which either specify the computational transi-
tions (rule molecules) or assist in carrying out the machine operations (assist-
ing molecules).

A dangling molecule is encoded by the string Xa[y]b or [y]bXa, where X
is the double-stranded portion, [y] is its sticky end portion, a is the state,
symbol, or position information encoded in X , and b is the state, symbol,
or position information encoded in [y]. At the beginning of the computation,
the array of head molecules along the head track is configured as

. . . ([h̄]pi−1H
pi−1
i−1 )(Ĥpiq

i [s])([h̄]pi+1H
pi+1
i+1 ) . . . (6.21)

The ith head molecule (marked by a hat) represents the current position of
the machine head. It encodes the current state q in its double-stranded por-
tion and possesses a sticky end [s] that is complementary to the sticky end [s̄]
of the symbol molecule below it. Furthermore, the position type information
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pi is encoded both in the sticky end portion and the double-stranded por-
tion of the head molecules. This will guarantee that the head array has the
shape (6.21) after each computational step. The array of symbol molecules
along the symbol track provides the Turing tape and is given as

([s̄]Sc1
1 )([s̄]Sc2

2 )([s̄]Sc3
3 ) . . . (6.22)

All symbol molecules possess sticky ends [s̄] and the symbols ci are encoded
by the double-stranded portions.

Computation

The one-step behavior of the Turing machine given by the transition δ(q, c) =
(q′, c′, p′) is implemented in eight steps. In the first step, the current head
Ĥpq

i (encoding position type p and current state q) and the symbol molecule
[s̄]Sc

i (encoding current symbol c) below it hybridize and are ligated into
(HiSi)pqc. This ligation product is cut by an endonuclease into Ĥp

i [r]qc and
[r̄]qcSi so that the sticky ends of both Ĥi and Si encode the current symbol
and state:

Ĥpq
i [s] + [s̄]Sc

i → (HiSi)pqc → Ĥp
i [r]qc + [r̄]qcSi . (6.23)

In the second step, a rule molecule R[r]qc hybridizes and is ligated with
symbol molecule [r̄]qcSi. This product is cut into the waste molecule Rqc

w [e]c
′

and the symbol molecule [ē]c
′
Si so that the sticky end [ē] encodes the new

symbol c′:

R[r]qc + [r̄]qcSi → (RSi)qcc′ → Rqc
w [e]c

′
+ [ē]c

′
Si . (6.24)

In the third step, the symbol molecule [ē]c
′
Si is restored to its default con-

figuration [s̄]c
′
Si so that it can eventually interact with the head molecule Hi.

For this, an assisting molecule Ec′ [e]c
′
hybridizes and is ligated with symbol

molecule [ē]c
′
Si. The resulting product is cut, yielding the waste molecule

Ew[s] and the symbol molecule [s̄]Sc′
i encoding the symbol c′ in its double-

stranded portion:

Ec′ [e]c
′
+ [ē]c

′
Si → (ES)c′ → Ew[s] + [s̄]Sc′

i . (6.25)

The waste molecule Ew[s] may hybridize and be ligated with some symbol
molecule [s̄]Sl. This may decrease the efficiency of the computation when the
concentration of the waste molecules increases. However, this is counteracted
by the endonuclease used in the first step, which may subsequently cut such
ligation products.

In the fourth step, the head molecule Ĥp
i [r]qc hybridizes and is ligated

with a rule molecule [r̄]qcR. The ligation product is cut into waste molecule
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[h̄]p
′
Rw and head molecule Ĥpq′

i [h]p
′
, which encodes the new state q′ in the

double-stranded portion and the motion direction p′ in the sticky end portion:

Ĥp
i [r]qc + [r̄]qcR→ (HiR)pqc → Ĥpq′

i [h]p
′
+ [h̄]p

′
Rw . (6.26)

In the fifth step, the head molecule Ĥpq′
i [h]p

′
hybridizes and is ligated to

either its left or right neighbor [h̄]p
′
H ′

j , j = i− 1 or j = i + 1, depending on
the sticky end information p′. The ligation product is cut into head molecules
Hp

i [t̄]pp′q′
and [t]pp′q′

Ĥ ′
j with j = i− 1 or j = i + 1 so that both sticky ends

encode position type p of Hi, position type p′ of Hj , and new state q′:

Ĥpq′
i [h]p

′
+ [h̄]p

′
H ′

j → (HiHj)pp′q′ → Hi[t̄]pp′q′
+ [t]pp′q′

Ĥ ′
j . (6.27)

In the sixth step, the head molecule Ĥ ′
j is altered similar to the fourth

step so that it can interact with a symbol molecule:

Ĥ ′
j [t]

pp′q′
+ [t̄]pp′q′

T → (H ′
jT )pp′q′ → Ĥ ′q

′

j [s] + [s̄]Tw . (6.28)

In the seventh step, the sticky end of the head molecule Hi is modified by
an assisting molecule in order to provide a new sticky end:

[t̄]pp′q′
Hi + T [t]pp′q′ → (THi)pp′q′ → Tw[g]pp′q′

+ [ḡ]pp′q′
Hi . (6.29)

In the last step, the head molecule Hi is grown by assisting molecules
in a series of alternating hybridizations, ligations, and cleavages in order to
restore its default state:

[ḡ]pp′q′
Hi → [h̄]pHp

i . (6.30)

The autonomous DNA Turing machine implements universal computation
and thus provides universal translational motion given by the motion of the
head symbol relative to the tracks.

The design of the autonomous DNA Turing machine was verified by a
computer simulation making use of four endonucleases. A full experimental
implementation of this machine requires the tackling of two major technical
issues. The first issue is to accommodate the futile reactions that take place
during the operational cycle. Futile reactions eventually occur between a
rule molecule R[r]qc and its complement [r̄]qcR, a head molecule Ĥpq[s] and
a symbol molecule [s̄]Sc, or a rule molecule R[r]qc and a symbol molecule
[r̄]qcS, among others. These reactions decrease the efficiency of the design,
but can be made fully reversible so that they do not block, reverse, or alter
the operability. The second issue is the limited encoding of symbols, states,
and positions as DNA words, which is dictated by the sizes of the recogni-
tion, restriction, and spacing regions of endonucleases. For this, the sticky
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ends must be carefully selected to avoid undesirable reactions. This may be
achieved by extending the DNA alphabet with unnatural bases.

Concluding Remarks

Autonomous DNA computational models can make use of structural DNA
nanotechnology, which aims at a rational approach to the construction of
new biomaterials, such as individual geometrical objects and nanomechanical
devices, including extended constructions such as periodic matter. In the
last decade, DNA was shown to be capable of fulfilling all of these roles
in prototype systems. A key element in this work are DX molecules, which
not only serve as model systems for structures proposed to be involved in
genetic and meiotic recombination, but also allow the implementation of small
cellular automata or other computational models in a molecular context.

Biological organisms perform complex information processing and control
tasks using sophisticated biochemical circuits. To date, no man-made bio-
chemical circuits even remotely approach the complexity and reliability of
silicon-based electronics. Once principles for their design are established, cir-
cuits could be used to control nanoscale devices in vitro, to interface with
existing biological circuits in vivo, or to analyze complex chemical samples
in situ. In particular, rational design of DNA devices is simplified by the pre-
dictability of Watson-Crick base pairing. Consequently, DNA devices could
be a promising alternative to proteins for synthetic chemical circuits. The
remaining challenge is to design chemical logic gates that can be combined
to construct large reliable circuits.
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Chapter 7

Cellular DNA Computing

Abstract Cellular DNA computing investigates computational properties of
DNA in its natural environment: the living cell. This chapter reviews some
recent DNA computing models which are proposed to work at the cellular
level. The first model describes gene synthesis during sexual reproduction in
ciliates, while the other models focus on logical control or manipulation of
cellular expression patterns.

7.1 Ciliate Computing

Ciliates are a diverse group of unicellular eukaryotic organisms. The process
of gene assembly in ciliates is one of the most complex instances of DNA
computation known in living organisms. This section provides an introduction
to this process from the computational point of view.

7.1.1 Ciliates

Ciliates form a diverse group of unicellular organisms that are found in prac-
tically all water-rich environments. The pond water critters are an ancient
group of eukaryotes with about 7,000 known species. All ciliates have hun-
dreds of tiny hair-like cilia which beat in unison to propel the organism
through water and to sweep food down into their oral apparatus (Fig. 7.1).
Some ciliates are very small, not much larger than the largest bacteria. Oth-
ers, like the “trumpet animalcule” Stentor, can become two millimeters long.

Ciliates possess organelles that help to perform all types of physiological
activities. They have developed the unique feature of nuclear dualism. They
possess two nuclei that are functionally different: the micronucleus and the

Z. Ignatova et al., DNA Computing Models, 243
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Fig. 7.1 Ciliate belonging to the genus Stylonychia . Image courtesy of BioMEDIA
Associates (www.ebiomedia.com).

macronucleus. The micronucleus contains a diploid, meiotic germline genome
whose genes are not directly expressed. For instance, the micronuclear genome
of the ciliate protist Sterkiella histriomuscorum (formerly Oxytricha trifallax )
has the size of approximately 5×108 bp. The genome consists of about 20,000
to 30,000 genes that are organized in about 100 micronuclear chromosomes.

The macronucleus , a highly specialized expression organelle, is a somatic
nucleus providing RNA transcripts needed for the vegetative functioning of
the cell. In Sterkiella the macronuclear genome consists of genes deployed on
a collection of about 20,000 different miniature (gene-sized) chromosomes,
each at a ploidy of about 1,000 per macronucleus. In this way, a single
macronucleus contains more than 20 million DNA molecules. These molecules
range from 250 bp to 40 kbp and are protected from endonuclease digestion
by a telomerase binding protein that forms a tight complex with a telomere
sequence appended at both ends of the molecule. This telomere sequence is
36 bp long and added by telomerase to both ends in the repeated pattern:
GGGG alternating with TTTT.

The somatically active macronucleus adheres its genetic material from
the germline micronucleus after sexual reproduction (conjugation) (Fig. 7.2).
Under certain conditions, such as overcrowding or environmental stress, cil-
iates proceed to sexual reproduction, and during this process micronuclear
genes are converted into their macronuclear form. This conversion is called
gene assembly. The process of gene assembly is very intricate, since the
micronuclear and the macronuclear forms of the same gene may be drastically
different. Indeed, gene assembly in ciliates belongs to the most sophisticated
DNA processing known so far in living organisms. During sexual reproduc-
tion two ciliate cells stick together and form a connected cytoplasmic channel.
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Fig. 7.2 Ciliates in conjugation. Image courtesy of BioMEDIA Associates
(www.ebiomedia.com).

At the same time, the micronuclei undergo meiosis. In meiosis, the diploid
micronuclei divide twice to produce four haploid descendent micronuclei, each
of which contains one copy of each chromosome. Both cells exchange one hap-
loid micronucleus through the cytoplasmic channel. The migrating haploid
micronucleus fuses with a stationary haploid micronucleus in each cell and
in this way forms a new diploid micronucleus. Then the two cells separate,
and the new diploid micronucleus in each cell divides into two (without cell
division). One of the descendent nuclei develops into a new macronucleus in
each cell during the next few days. At the same time, the old macronucleus
and the unused haploid micronuclei are destroyed.

As is common in eukaryotes, the micronuclear genome mostly consists of
spacer DNA separating the genes, and the genes are interrupted by non-
coding segments termed internally eliminated sequences (IESs). The gene
segments interrupted by IESs are protein-coding and are called macronuclear
destined sequences (MDSs). Almost all Spichotrich and Paramecium genes
carry multiple IESs. In the case of micronuclear genes interruped by IESs,
contiguous coding segments may neither be adjacent nor on the same strand.
This means that the order of the MDSs in a micronuclear gene may be a per-
mutation of the natural ordering in the macronuclear gene, and some MDSs
may lie on the complementary strand (i.e., they are inverted in the micronu-
clear gene) (Fig. 7.3). In the micronuclear genome of Sterkiella, as many as
25–30% of the genes appear to be scrambled in complex patterns ranging
from a few to over 50 coding segments, present in one or more micronuclear
loci. Gene assembly removes IESs by precise excision and properly reorders
and joins these fragments into the correct linear gene-sized, translatable order
and orientation (Fig. 7.4). To this end, characteristic short sequences at the
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M3 M4 M6 M5 M7 M9 M2 M1 M8

Fig. 7.3 The actin I gene in the micronucleus of S. nova. The MDS sequences are
given as rectangles (with MDS M2 inverted) and the interspersed IESs are shown as
line segments.

M1 M2 M3 M4 M5 M6 M7 M8 M9

Fig. 7.4 The actin I gene in the macronucleus of S. nova.

ends of the MDSs termed pointers play a central role in gene assembly. The
pointer at the end of an MDS coincides as a nucleotide sequence with the
pointer at the beginning of the succeeding MDS in the macronuclear gene
(Fig. 7.5). In this way, the pointers guide the recombination of the MDSs
into a macronuclear gene (Fig. 7.6). Finally, the released DNA molecules
replicate many times so that at the end of the macronuclear development
each gene is present in about 1,000 copies of individual molecules.

7.1.2 Models of Gene Assembly

Two models for gene assembly in ciliates have been recently proposed. The
first model, devised by L. Kari and L. Landweber (1999), is intermolecular
and consists of the following three operations:

5′ − ...TCGATCGG|ACATTC|aacattgaatctaat|ACATTC|GATCTAGGT... − 3′
3′ − ...AGCTAGCC|TGTAAG|aacattgaatctaat|TGTAAG|CTAGATCCA... − 5′

Fig. 7.5 A section of the micronuclear gene encoding βTP in S. histriomuscorum.
This section contains in turn a postfix of MDS 2, IES 2, and a prefix of MDS 3.
The two repeated MDS subsequences (pointers) are ACATTC/TGTAAG, and the IES is
in lower case letters. Vertical bars indicate subsequences.

5′ − ...TCGATCGG|ACATTC|GATCTAGGT... − 3′
3′ − ...AGCTAGCC|TGTAAG|CTAGATCCA... − 5′

Fig. 7.6 A section of the macronuclear gene encoding βTP in S. histriomuscorum.
This section contains a postfix of MDS 2 and a prefix of MDS 3, with one of the point-
ers remaining, while the other plus the IES were spliced out. Vertical bars indicate
subsequences.
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Fig. 7.7 String circular recombination I.

• String circular recombination I: Given a DNA molecule in which a pointer
p has two occurrences. The molecule forms a hairpin so that the pointer p
aligns with its copy, and the hairpin is spliced out (Fig. 7.7).

• String circular recombination II: This is the inverse of the first operation.
Two DNA molecules, one linear and one circular and each containing one
occurrence of a pointer p, become aligned in such a way that a linear
molecule results in which the former circular molecule is flanked by the
two occurrences of the pointer p.

• String parallel recombination: Two linear DNA molecules, each of which
contains one occurrence of a pointer p, are aligned in a way that all
data beyond the pointer p are exchanged between the two molecules
(Fig. 7.8).

The second model, developed by G. Rozenberg and coworkers (2001-2006),
is intramolecular and comprises the following three operations:

• Loop recombination: Given a DNA molecule in which two occurrences of
the same pointer p flank one IES. The molecule folds so that the pointer
p finds its second occurrence, and the IES is spliced out (Fig. 7.9).

• Hairpin recombination: Given a DNA molecule in which a pointer p has
two occurrences in such a way that one is inverted. The molecule folds
into a hairpin loop so that the pointer p aligns to its inverted copy,
and crosses over at the hairpin crossing reinverting the inverted pointer
(Fig. 7.10).

• Double loop recombination: Given a DNA molecule in which two occur-
rences of pointers p and q alternate. The molecule folds into a double loop

u p v

y p z

�

u v

y z

Fig. 7.8 String parallel recombination.
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Fig. 7.10 Hairpin recombination.

in such a way that each pointer aligns to its second occurrence. In this
way, the pointers are recombined so that the loop’s crossing is reversed
(Fig. 7.11).

In the following we provide a mathematical formalization of gene assembly
in ciliates based on signed double occurrence strings and signed graphs.
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Fig. 7.11 Double loop recombination.

7.1.3 Intramolecular String Model

Let Σ be an alphabet. The complementary alphabet of Σ is defined as Σ =
{a | a ∈ Σ}, where Σ ∩ Σ = ∅. The set Σ ∪ Σ is termed a signed alphabet.
Let Σ� = (Σ ∪Σ)∗ denote the free monoid over the signed alphabet Σ ∪Σ.
Each string in Σ� is called a signed (double occurrence) string over Σ.

For each symbol a ∈ Σ, put a = a. Thus, the mapping φ : Σ → Σ : a �→ a
is an involution and extends to an anti-morphic involution φ : Σ� → Σ� :
x �→ x. Thus for each signed string x = a1 . . . an over Σ,

x = an . . . a1 . (7.1)

Define the mapping ‖ · ‖ : Σ ∪Σ → Σ by putting ‖a‖ = a = ‖a‖.
Let x ∈ Σ� be a signed string over Σ. We say that a symbol a ∈ Σ ∪ Σ

occurs in x, if a or a is a substring of x. Let the domain of the string x,
dom(x), denote the set of all (unsigned) symbols a ∈ Σ that occur in x.

A string x ∈ Σ� is called legal if every symbol a ∈ dom(x) occurs exactly
twice in x. In particular, if a legal string x contains both a and a, then a is
called positive in x. Otherwise, a or a is termed negative in x. Legal circular
strings are similarly defined.

Example 7.1. The signed string x = 23245345 is legal over {2, 3, 4, 5}. While
2 and 4 are positive in x, 3 and 5 are negative in x. The signed string 2345345
is not legal, for it has only one occurrence of the symbol 2. ♦

Let x = a1 . . . an ∈ Σ� be a legal string. For each symbol a ∈ dom(x),
there are indices i and j with 1 ≤ i < j ≤ n so that ‖ai‖ = a = ‖aj‖. The
substring x(a) = ai . . . aj is called the a-interval of a in x. Two symbols a
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and b of dom(x) are said to overlap in x if the a-interval overlaps with the
b-interval (i.e., if x(a) = ai . . . aj and x(b) = ak . . . al then either i < k < j < l
or k < i < l < j).

Example 7.2. The signed string x = 23245345 is legal over {2, 3, 4, 5}. The
corresponding intervals are x(2) = 232, x(3) = 32453, x(4) = 4534, and x(5) =
5345. Thus, the interval of the symbol 3 overlaps with the intervals of the
symbols 2, 4, and 5, and the intervals of the symbols 4 and 5 overlap. ♦

Each micronuclear gene in the gene assembly process can be described
by a signed (double occurrence) string which provides the sequence and the
orientation of the MDSs. For this, consider the alphabet Σk = {2, . . . , k},
k ≥ 2, and put Πk = Σk ∪ Σk. The elements of Πk are termed pointers.
The MDS structure of a gene can be solely represented by the sequence of its
pointers. For this, each MDS Mi is represented as the string i(i+1), and the
inverse MDS M i is represented by the string i + 1 i, 1 < i < k. Moreover, the
first MDS M1 and the last MDS Mk are represented in a different manner:
M1 (M1) is described by the symbol 2 (2), while Mk (Mk) is displayed by
the character k (k).

Example 7.3. The actin I gene in S. nova possesses the MDS-IES descriptor
(Fig. 7.3)

M3I1M4I2M6I3M5I4M7I5M9I6M2I7M1I8M8 .

The associated MDS sequence corresponds to the legal string

3 4 4 5 6 7 5 6 7 8 9 32 2 8 9 .

♦
The intramolecular recombination operations for gene assembly in ciliates

proposed by G. Rozenberg and coworkers can be formalized by legal strings
through the following string rewriting rules:

• The string negative rule Np for a pointer p ∈ Πk applies to a legal string
x = uppv over Σk,

Np(uppv) = uv, u, v ∈ Σ�
k . (7.2)

Let N = {Np | p ∈ Πk, k ≥ 2} be the set of all string negative rules on
signed strings.

• The string positive rule Pp for a pointer p ∈ Πk operates on a legal string
x = upvpw over Σk,

Pp(upvpw) = uvw, u, v, w ∈ Σ�
k . (7.3)

Let P = {Pp | p ∈ Πk, k ≥ 2} be the set of all string positive rules on
signed strings.
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• The string double rule Dp,q for pointers p, q ∈ Πk resorts to a legal string
x = upvqwpyqz over Σk,

Dp,q(upvqwpyqz) = uywvz, u, v, w, y, z ∈ Σ�
k . (7.4)

Let D = {Dp,q | p, q ∈ Πk, k ≥ 2} be the set of all string double rules on
signed strings.

A composition π = πn ◦ . . .◦ π1 of operations from the set N∪P∪D is called
a string reduction of a string x, if π is applicable to x. A string reduction
π of x is termed successful if the reduced string π(x) is the empty string.
The empty string stands for the abstraction of the completion of the gene
assembly process for legal strings.

Example 7.4. Consider the legal string x = 2 3 24 5 3 45 over Σ5. Two suc-
cessful string reductions of x are

(P5 ◦N3 ◦ P4 ◦ P2)(x) = (P5 ◦N3 ◦ P4)(3 4 5 3 45) = (P5 ◦N3)(3 3 5 5)
= P5(5 5) = ε ,

and

(P2 ◦ P4 ◦D3,5)(x) = (P2 ◦ P4)(2 4 2 4) = P2(2 2) = ε .

♦
Theorem 7.5. Let k ≥ 2 be an integer. Each legal string over Σk possesses
a successful string reduction.

Proof. The proof uses induction over k. Let x be a legal string over Σ2.
Clearly, the string x can be successfully reduced by the positive and negative
rules.

Let x be a legal string over Σk, k > 2. Let κ denote k or k. Consider three
cases:

• If x has the form uκκv, then Nκ(x) = uv, and by induction uv has a
successful string reduction.

• If x has the shape uκvκw then Pκ(x) = uvw, and by induction uvw is
successfully reducible.

• Otherwise, x is of the form uκvκw so that v is not empty. First, suppose
that the k-interval of x does not overlap with another interval of x. Then v
is a legal string over Σk−1 and thus by induction is successfully reducible.
This provides the string uκκw which is reducible by the string negative
rule to the string uw. By induction, the string uw has a successful string
reduction and hence x is successfully reducible.
Second, suppose that there is a symbol l ∈ Σk−1 so that the k-interval
of x overlaps with the l-interval of x. If l is negative in x, then the string
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double rule yields the string y = Dκ,l(x) in which κ and l are deleted.
Thus by induction, the string y is successfully reducible.
This leaves us with the case that the k-interval of x overlaps only with
l-intervals of x, where l ∈ Σk−1 is positive in x. For each such symbol l,
the string positive rule Pl is applied in order to eliminate both l and l.
These elimination steps are repeatedly carried out resulting in a string x′

of the form yκκz. This string can be subject to the negative rule yielding
the string Nκ(x′) = yz. By induction, the string yz possesses a successful
string reduction and thus x is successfully reducible, as required. �

7.1.4 Intramolecular Graph Model

A signed graph G is a triple (V, E, μ), where (V, E) is an undirected graph
and μ : V → {±1} is a vertex labelling. A vertex v in G is called positive
if μ(v) = +1, and negative if μ(v) = −1. Put V + = {v ∈ V | μ(v) = +1}
and V − = V \ V +. Let G+ be the signed subgraph of G induced by V +,
and let G− be the signed subgraph of G induced by V −. A signed graph is
all-positive if V = V +, and all-negative if V = V −.

Each legal string x over Σ is associated with a signed graph Gx =
(Vx, Ex, μx) by the following settings:

• Vx = dom(x),
• Ex = {ab | a and b overlap in x}, and
• μx(a) = +1 if a is positive in x, and μx(a) = −1 if a is negative in x.

Each micronuclear gene in the gene assembly process can be described by a
signed graph which provides the overlap of the pointers.

Example 7.6. The signed graph for the micronuclear gene actin I in S. nova
is given in Fig. 7.12. ♦

Let G = (V, E, μ) be a signed graph and let U ⊆ V . If the subgraph
of G induced by U is replaced by its complementary graph inclusively
complementing the signs of the vertices in U , the resulting signed graph
comU (G) = (V, E′, μ′) is said to be the U -complement of G. In particular, if
U is given by the neighborhood NG(v) = {u | uv ∈ E} ∪ {v} of a vertex v in

������ !2+ ������ !3+

���������
������ !8− ������ !5−

���������
������ !6−

������ !4− ������ !9−

���������
������ !7−

���������

Fig. 7.12 Signed graph of the micronuclear gene actin I in S. nova (Fig. 7.3).
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Fig. 7.13 Local complement loc3(G) of the signed graph G for the micronuclear
gene actin I in S. nova (Fig. 7.12).

G, then the U -complement of G is called the local complement of G at v and
is denoted by locv(G) (Fig. 7.13). For each vertex v in G, let G − v denote
the subgraph of G that is induced by the set V \ {v}.

The intramolecular recombination operations for gene assembly in ciliates
proposed by G. Rozenberg and coworkers can be formalized by signed graphs
as follows:

• The graph negative rule for a vertex p applies to G if p belongs to V −

and is isolated. The resulting graph Np(G) is the signed graph G− p. Let
N = {Np | p ≥ 2} be the set of all graph negative rules on signed graphs.

• The graph positive rule for a vertex p applies to G if p belongs to V +. The
resulting graph Pp(G) is the signed graph locp(G)−p. Let P = {Pp | p ≥ 2}
be the set of all graph positive rules on signed graphs.

• The graph double rule for two vertices p and q applies to G if p and
q both belong to V − and are adjacent. The resulting graph Dp,q(G) =
(V \ {p, q}, E′, μ′) is obtained from G so that μ′ equals μ restricted to
V \ {p, q} and E′ is derived from E by complementing the edges that join
vertices in NG(p) with vertices in NG(q). Let D = {Dp,q | p, q ≥ 2} be the
set of all graph double rules on signed graphs.

Example 7.7. Consider the legal string x = 2 3 24 5 3 45 over Σ5. The asso-
ciated signed graph Gx is shown in Fig 7.14. Moreover, the string P4(x) =
2 3 23 5 5 corresponds to the signed graph P4(Gx) in Fig 7.15, and the string
D3,5(x) = 2 42 4 is associated with the signed graph D3,5(Gx) in Fig 7.16. ♦

Let G be a signed graph. A composition π = π1 ◦ . . . ◦ πn of operations
from the set N∪P∪D is a successful strategy for the graph G if the reduced
signed graph π(G) is the empty graph (i.e., the graph with empty vertex

������ !2+ ������ !3− ������ !4+

���������

������ !5−

Fig. 7.14 Signed graph for the legal string x = 2 3 2 4 5 3 4 5.
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������ !2+ ������ !3+ ������ !5+

Fig. 7.15 Signed graph for the string P4(x) = 2 3 2 3 5 5.

������ !2+ ������ !4+

Fig. 7.16 Signed graph for the string D3,5(x) = 2 4 2 4.

set). The empty graph stands for the abstraction of the completion of the
gene assembly process for signed graphs. In view of the analogy between
string reduction rules and graph reduction rules, Theorem 7.5 can be stated
in terms of signed graphs.

Theorem 7.8. Let k ≥ 2 be an integer. The signed graph associated with a
legal string over Σk has a successful strategy.

String and graph reductions suggest that gene assembly is a sequential
process. However, parallelism is a natural phenomenon in biomolecular pro-
cesses. Therefore, gene assembly should be considered as a parallel process.
Intuitively, a set of operations can be applied in parallel to a gene pattern if
and only if the operations can be sequentially applied to the pattern in any
order. This view is consistent with the notion of concurrency in Computer
Science.

Let R be a finite subset of rules from the set N∪P∪D, and let G be a signed
graph. The rules in R are applicable in parallel to G if for any ordering of
the operations π1, . . . , πn in R, the composition π = πn ◦ . . .◦π1 is applicable
to G. In particular, two operations π and τ are applicable in parallel to G
if both π ◦ τ and τ ◦ π are applicable to G. Notice that if the rules in R are
applicable in parallel to a signed graph G, then by definition the rules in any
subset of R are applicable in parallel to G. However, the converse it not true
as demonstrated by the following:

������ !2− ������ !3−

���������

������ !7−

���������

���������
������ !4−

������ !6− ������ !5−

���������

Fig. 7.17 Signed graph G.
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Example 7.9. Consider the signed graph G in Fig. 7.17. It can be easily
checked whether any two rules from the set R = {D2,3, D4,5, D6,7} are appli-
cable in parallel to G. However, the rules in R are not applicable in parallel to
G. To see this, observe that the signed graph (D2,3 ◦D4,5)(G) is the isolated
all-negative graph on the vertex set {6, 7}, and thus D6,7 is not applicable to
this graph. ♦

The main result on string or graph reduction in ciliates states that reduc-
tion is the same, regardless of the sequential order in which the rules are
applied. To prove this, we need two basic assertions.

Lemma 7.10. Let G be a signed graph with vertices p and q. If Dp,q is appli-
cable to G, then Dp,q(G) = Pp(Pq(locp(G))).

Proof. Let x = upvqwpyqz be a legal string. Thus Dp,q is applicable to x and
hence Dp,q(x) = uywvz. On the other hand,

Pp(Pq(locp(x))) = Pp(Pq(upvqwpyqz)) = Pp(Pq(u pw q v p y q z))
= Pp(u p w v p y z) = Pp(u p w y p v z)
= u w y v z = uywvz .

�
Lemma 7.11. If G = (V, E, μ) is a signed graph and U1, U2 ⊆ V , then
comU1(comU2(G)) = comU2(comU1(G)).

Proof. Let G1 = (V1, E1, μ1) and G2 = (V2, E2, μ2) be graphs so that G1 =
comU1(comU2(G)) and G2 = comU2(comU1(G)). Let p ∈ V . If p �∈ U1 ∪ U2,
then the neighborhood of p and the sign of p are the same in G, G1, and G2.
If p ∈ U1 \ U2, then the sign of p changes but is the same in both G1 and
G2. Furthermore, the neighborhood of p is complemented in both G1 and G2.
Finally, if p ∈ U1 ∩ U2, then the sign of p changes twice and is the same in
G, G1 and G2. Moreover, the neighborhood of p is complemented twice and
is therefore the same in G, G1 and G2. It follows that the signed graphs G1

and G2 coincide. �
Let us begin with a special case of the main result.

Lemma 7.12. Let G = (V, E, μ) be a signed graph. If π, τ ∈ N ∪ P ∪ D are
applicable in parallel to G, then π(τ(G)) = τ(π(G)).

Proof. If π ∈ N or τ ∈ N, then the result is clear. Otherwise, let π, τ ∈ P∪D.
Each operation in P is a composition of a local complementation and a vertex
removal. Moreover, by Lemma 7.10, each operation in D can be represented
by a composition of local complementations and vertex removals. But by
Lemma 7.11, local complementations commute. Furthermore, vertex removals
commute (i.e., for any p, q ∈ V , (G − p) − q = (G − q) − p), and local
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complementations and vertex removals commute, that is, for any U ⊆ V and
p ∈ V , comU (G) − p = comU (G − p). Hence, by commutativity, the result
follows. �
These preliminary assertions lead us to the main result.

Theorem 7.13. Let G be a signed graph and let R ⊆ N ∪ P ∪ D be a set of
rules applicable in parallel to G. For any two compositions π and π′ of the
rules in R, π(G) = π′(G).

Proof. There exists a sequence π = π0, π1, . . . , πn = π′ of permutations of π
so that πi = πi,2◦αi◦βi◦πi,1 and πi+1 = πi,2◦βi◦αi◦πi,1, where πi,1 and πi,2

are compositions and αi and βi are rules in R. Thus, it suffices to consider
compositions of the form π = π2 ◦α ◦β ◦π1 and π′ = π2 ◦β ◦α ◦π1, where π1

and π2 are compositions and α and β are rules in R. Clearly, π(G) = π′(G)
if and only if (α ◦ β)(π1(G)) = (β ◦α)(π1(G)). But the latter follows directly
from Lemma 7.12. �

7.1.5 Intermolecular String Model

The intermolecular model for gene assembly in ciliates postulated by L. Kari
and L. Landweber (1998) can be formalized in the framework of legal strings
by the following string rewriting rules:

• The string circular rule I for a pointer p ∈ Πk applies to a legal string
x = upvpw over Σk,

C(1)
p (upvpw) = uw + •v, u, v, w ∈ Σ�

k . (7.5)

Let C(1) = {C(1)
p | p ∈ Πk, k ≥ 2} be the set of all string circular rules I

on legal strings.
• The string circular rule II for a pointer p ∈ Πk operates on legal strings

x = upv and x′ = •pw over Σk,

C(2)
p (upv + •pw) = uwv, u, v, w ∈ Σ�

k . (7.6)

Let C(2) = {C(2)
p | p ∈ Πk, k ≥ 2} be the set of all string circular rules II

on legal strings.
• The string parallel rule for a pointer p ∈ Πk resorts to legal strings x = upv

and x′ = ypz over Σk,

Lp(upv + ypz) = uz + yv, u, v, y, z ∈ Σ�
k . (7.7)

Let L = {Lp | p ∈ Πk, k ≥ 2} be the set of all string parallel rules on legal
strings.



7.1 Ciliate Computing 257

These rules usually operate on multisets of legal strings so that each string
has a multiplicity as in the definition of splicing systems.

Example 7.14. We have C(1)
3 (23245345) = 245 + •245, C(2)

3 (2324 + •5345) =
245524, and L3(2324 + 5345) = 245 + 524. ♦

A composition π = πn ◦ . . . ◦ π1 of operations from C(1) ∪ C(2) ∪ L is a
string reduction of a string x, if π is applicable to x. A string reduction π of
x is successful if the reduced string π(x) is the empty string (more generally,
a multiset of empty strings). The empty string stands for the abstraction of
the completion of the gene assembly process for legal strings.

This model cannot deal with legal strings in which a pointer is inverted.
Therefore, we make two assumptions: Each legal string is available in two
copies and the inversion of each legal string is available as well. While the
first assumption is vital in the intermolecular model, the second is quite
natural whenever double-stranded DNA molecules are modeled.

Theorem 7.15. Let k ≥ 2 be an integer. Each legal string over Σk possesses
a successful string reduction in the intermolecular model.

Proof. Let x be a legal string over Σk. We consider three cases:

• If x = uppv for some pointer p ∈ Πk, then

C(1)
p (uppv) = uv + •ε = Np(uppv) + •ε .

• If x = upvpw for some pointer p ∈ Πk, then by assumption the inverted
legal string is also available and thus we obtain

(Lp ◦ Lp)(u p v pw + u p v pw) = (Lp ◦ Lp)(u p v p w + w p v p u)
= Lp(u v p u + w v pw)
= u v w + w v u

= Pp(u p v pw) + Pp(w p v p u)
= Pp(u p v pw) + Pp(u p v pw)
= Pp(u p v pw + u p v p w) .

• If x = upvqwpyqz for some pointers p, q ∈ Πk, then

(C(2)
q ◦ C(1)

p )(upvqwpyqz) = C(2)
q (uyqz + •vqw)

= C(2)
q (uyqz + •qwv)

= uywvz

= Dp,q(upvqwpyqz) .

These equations show that each string reduction of x in the intermolecular
model can be simulated by a string reduction of x in the intramolecular
model, and vice versa. Hence, by Theorem 7.8, the result follows. �
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7.2 Biomolecular Computing

A diverse library of easy-to-use biological components that expands the capa-
bilities to probe and control cell behavior is under construction.

7.2.1 Gene Therapy

Many diseases result from defective genes, which are often caused by genetic
mutations. Such mutations can be inheritated or induced by several stress
factors. Mutations can persist and can be passed down through generations.
Defective alleles of a gene often have no harmful effects since our genomes
are diploid, that is, two copies of nearly all genes are available. The only
exception to this rule are the genes found on the male sex chromosomes. In
the majority of situations, one normal gene is sufficient to avoid all symptoms
of disease. However, a disease phenotype will develop if the mutation persists
through the two alleles. As a consequence, the gene cannot be expressed into
a protein or the expressed protein has an altered 3D-fold. In either case, a
crucial physiological activity of the cell might be depleted. In this context, a
good strategy to treat diseases based on a mutational gene pattern is either
“correcting” the aberrant gene or “supplementing” the cell with a copy of the
healthy (wild-type) gene. The cells can then produce the correct protein and
consequently eliminate the root causative of the disease. Gene therapy can
target somatic (body) or germ (egg and sperm) cells. Somatic gene therapy
changes the genome of the recipient, but this change is not passed along to the
next generation. In contrast, germline therapy alters the egg and sperm cells
and these changes are passed to the offspring. Today, somatic gene therapy
is primarily at the experimental stage, while germline therapy is the subject
of much debate.

In most gene therapy studies, a healthy gene is inserted into the genome
to replace an aberrant gene. The most common delivery system is vector
mediated. A vector is a carrier molecule delivering a healthy gene into the
recipient’s target cells. The most commonly used vectors are viruses that
are genetically prepared to carry normal human DNA, since viruses have
found a way of encapsulating and delivering their genes to human cells in
a pathogenic manner. The most common viruses for gene therapy are retro-
viruses and adenoviruses. The former can create double-stranded DNA copies
of their RNA genome and integrate these copies into the chromosomes of the
host cells, while the latter have a linear double-stranded DNA genome capable
of replicating in the nucleus of mammalian cells using the host’s biosynthesis
machinery. Besides vector-based gene supply, there are several other options
for gene delivery. One method is to directly introduce the therapeutic DNA
product into the target cells. However, this approach only works with cer-
tain tissues and requires large amounts of DNA. Another method involves
creating an artificial lipid sphere with an aqueous core containing the thera-
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peutic DNA. This liposome is able to pass the DNA through the target cell’s
membrane.

Gene therapy faces many obstacles before it can be considered an effective
approach for treatment. First, the healthy DNA introduced into target cells
must remain functional and the cells containing the healthy DNA must be
long-lived and stable. Problems with integrating DNA into the genome and
the rapidly dividing nature of many cells prevent gene therapy from achieving
long-term benefits. Thus, patients will have to undergo multiple rounds of
gene therapy. Second, the immune system is stimulated each time a foreign
object is introduced into human tissue, and this stimulus may reduce the
effectiveness of the gene therapy. Moreover, the immune system’s enhanced
response to invaders previously encountered hampers a repeated treatment.
Third, viruses may cause potential problems for the recipient, like toxicity,
immune and inflammatory responses, and gene control and targeting issues.
Furthermore, the viral vector may recover its ability to cause disease inside
the recipient. Finally, some of the most commonly occurring disorders, such
as heart disease, high blood pressure, diabetes, and arthritis, are caused by
combined defects in various genes. These multigene disorders are difficult to
treat effectively using gene therapy.

7.2.2 Anti-Sense Technology

Anti-sense technology is based on a widespread mechanism in natural gene
expression control. Anti-sense technology uses anti-sense sequences that
specifically pair and subsequently inhibit target sense sequences. Anti-sense
sequences are DNA or RNA or chemically modified nucleotide sequences,
while the usual target in anti-sense strategies is mRNA. Anti-sense sequences
bind to the complementary part of the single-stranded mRNA and block
its translation. The double-stranded hybrid is further targeted for degra-
dation. Anti-sense-mediated steric hindrance can in addition to translation
affect RNA processing, RNA transport, and transcription (in the case of viral
RNA). RNA level intervention by anti-sense offers several opportunities for
gene control. Indeed, genomic diversity expands at the RNA level through
RNA processing, and differences in processing patterns can be manipu-
lated through anti-sense intervention. The first anti-sense drug that achieved
market clearance was vitravene, treating a condition called cytomegalovirus
retinitis in people with AIDS.

Gene Expression Anti-Switches

Anti-sense technology can be used to regulate gene expression in a ligand-
dependent manner. This was demonstrated by T. Bayer and C. Smolke
(2005), providing an anti-switch that can be used for programming cellular
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behavior and genetic networks with respect to cellular state and environ-
mental stimuli. For this, a trans-acting RNA-based regulator termed anti-
switch was designed that regulates target expression in response to a ligand.
The anti-switch uses an anti-sense domain to control gene expression and an
aptamer domain to recognize specific effector ligands. Aptamers are DNA
species that bind specific ligands and are generated through in vitro selec-
tion or systematic evolution of ligands by exponential enrichment (SELEX).
Ligand binding at the aptamer domain induces a conformational change that
allows the anti-sense domain (15 nt) to interact with a target mRNA to affect
translation. In the absense of the ligand, the anti-sense domain is sequestered
in an anti-sense stem preventing target binding (Fig. 7.18). The anti-switch
was tested in Saccharomyces cerevisiae (baker’s yeast) using theophylline as
a ligand.

RNA Interference

Another useful anti-sense technology is RNA-mediated interference (RNAi),
which provides a pathway conserved in most eukaryotic organisms as a form
of innate immunity against viruses and other foreign gene material. The RNAi
pathway is initiated by either exogenous or endogenous double-stranded RNA
that is cut by the ribonuclease dicer. This enzyme binds and cleaves longer
double-stranded RNA into fragments of 19 to 25 bp. These short double-
stranded fragments, termed small interfering RNA (siRNA), are separated
into single-stranded RNA and integrated into an RNA-induced silencing com-

off anti-switch on anti-switch

gene expression on gene expression off

gene expression ongene expression off

Fig. 7.18 Schematic behavior of anti-switch regulator.
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plex (RISC). After integration into RISC, siRNA can anneal to complemen-
tary stretches of the target mRNA and, as mentioned before, mediate the
silencing of the gene expression.

In mammalian cells, it is known that double-stranded RNA of 30 bp or
longer can trigger interferon responses, which assist the immune system by
inhibiting viral replication. These responses are intrinsically sequence-non-
specific. Hence, as an experimental and therapeutic agent, the application of
RNA interference is very limited.

RNAi was recently used by Y. Benenson and coworkers (2007) to imple-
ment Boolean logic in human kidney cells. For this, Boolean gates were con-
structed whose input is comprised of two or more mRNA species. These
mRNAs encode the same protein, but have different non-coding regions. The
corresponding protein is the circuit’s output. The logic values “true” and
“false” are represented by the concentrations of the molecules. An OR gate
can be designed in a straightforward manner. If at least one mRNA species
is present, the output protein will be produced.

An AND gate makes use of molecular mediators in the form of siRNAs,
since they are known to target untranslated regions. For this, selective
inhibitory links must be designed between the endogenous inputs and these
siRNAs. If an input is present, it blocks the linked siRNA. Thus, if all inputs
are present at the same time, all siRNAs are blocked and the output is gen-
erated from the mRNA.

A NOT gate uses a selective activating link between the endogenous input
and siRNA. If an input is present the linked siRNA is induced, while if an
input is absent the associated siRNA is inhibited. Currently, the evaluator
modules were implemented, but not the sensor modules providing the link
between input and siRNA.

7.3 Cell-Based Finite State Automata

The first autonomous finite state machine working in a living cell was pro-
posed by Y. Sakakibara and coworkers (2006). This approach is based on
the length-encoding automaton model (Sect. 6.2.2) and was tested in E. coli
cells.

Data Representation

Let M = (Σ, S, δ, s0, F ) be a finite automaton with state set S =
{s0, . . . , sm}.

Similar to the length-encoding automaton model, each symbol a in Σ
is encoded by a single RNA strand σ(a). In this way, each input string
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x = a1 . . . an over Σ will be encoded by a single RNA strand consisting
of alternating symbol encodings and spacers,

σ(x) = 5′ − X1 . . . Xmσ(a1)X1 . . . Xmσ(a2) . . .X1 . . . Xmσ(an)− 3′ , (7.8)

where X1, . . . , Xm is the spacer sequence. A start codon should be present
in front of the 5’ end for translation purposes. Moreover, an RNA sequence
should be appended at the 3’ end of the input strand containing, in turn, one
of the stop codons, UAA, UAG or UGA, and the mRNA sequence of a gene of
interest, that is,

5′ − R1 . . . RuUAAY1 . . . YvZ1 . . .Zw − 3′ , (7.9)

where R1 . . .Ru and Y1 . . .Yv are RNA subsequences flanking a stop codon
(UAA), and Z1 . . .Zw is the mRNA strand of a gene.

Similar to the length-encoding automaton model, each transition rule
δ(si, a) = sj , a ∈ Σ, is encoded by the single strand

3′ − Xi+1 . . . Xmσ(a)X1 . . . Xj − 5′ , (7.10)

where X denotes the Watson-Crick complement of the nucleotide X, and
σ(a) refers to the Watson-Crick complement of the RNA sequence σ(a). In
this model, however, each transition rule is implemented by a sequence of
tRNA molecules so that the concatenation of the corresponding anti-codons
equals as RNA molecule the single strand (7.10). To this end, artificial tRNA
molecules with four- and five-base anti-codons are employed.

Example 7.16. Consider the finite state automaton M in Fig. 6.23. Put
σ(a) = AGGU, σ(b) = GCGC and take as spacer the nucleotide A. The word
x = abab is then encoded as 5′− AAGGUAGCGCAAGGUAGCGC− 3′. The encoding
of the state transitions is illustrated in Table 7.1, while the implementation
of the state transitions by tRNA molecules is shown in Table 7.2. The tran-
sition rule δ(s0, a) = s1 is encoded by the concatenation of the anti-codons
corresponding to the tRNA molecules T1 and T2,

3′ − UUC︸︷︷︸ CAU︸︷︷︸−5′ .

The remaining transition rules are encoded by singleton tRNA molecules. ♦

Computation

An input string is encoded by an mRNA molecule consisting of the concate-
nated strands in (7.8) and (7.9). The computation of this mRNA molecule is
accomplished by the biosynthesis mechanism of the living cell.
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Table 7.1 Encoding of state transitions in finite state automaton (Fig. 6.23).

Transition Encoding

δ(s0, a) = s1 3′ − UUCCAU− 5′

δ(s0, b) = s0 3′ − UCGCG− 5′

δ(s1, a) = s0 3′ − UCCA− 5′

δ(s1, b) = s1 3′ − CGCGU− 5′

Table 7.2 Encoding of state transitions by tRNA molecules.

tRNA Anti-Codon Transition Rule

T1 3′−UUC−5′ δ(s0, a) = s1
T2 3′−CAU−5′

T3 3′−UCCA−5′ δ(s1, a) = s0
T4 3′−UCGCG−5′ δ(s0, b) = s0
T5 3′−CGCGU−5′ δ(s1, b) = s1

For this, input strings need to be transfected into the living cell, and if
not naturally available, the tRNA molecules in the cell must be transfected,
too. The computation is carried out by tRNA molecules in such a way that if
the input string is accepted, the input string including the gene of interest is
translated (as a single product), and if the input string is not accepted then
the translation ends at the stop codon made available in the substrand (7.9).
In the latter case, the gene of interest will not be translated. This requires
that the appended substrand 5′−R1 . . . RuUAAY1 . . . Yv−3′ containing the stop
codon must be appropriately designed.

Example 7.17. In view of the previous example, the input string x = aaaa is
accepted by the automaton via the transitions s0

a→ s1, s1
a→ s0, s0

a→ s1,
and s1

a→ s0. The corresponding mRNA molecule is given by

5′ − AAGGUAAGGUAAGGUAAGGUAUAAGGZ1 . . . Zw − 3′

where AUAAGG is the appended substrand containing the stop codon UAA.
The computation carried out by the tRNA molecules translates the gene of
interest because the stop codon is out of phase:

5′ − AAG GUA AGGU AAG GUA AGGU AUA AGG Z1 . . . Zw − 3′

3′ − UUC︸︷︷︸ CAU︸︷︷︸ UCCA︸ ︷︷ ︸ UUC︸︷︷︸ CAU︸︷︷︸ UCCA︸ ︷︷ ︸ UAU︸︷︷︸ UCC︸︷︷︸ Z1 . . . Zw − 5′ .

The input string x = aaa is not accepted by the automaton and is encoded
by the mRNA molecule

5′ − AAGGUAAGGUAAGGUAUAAGGZ1 . . . Zw − 3′ .
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The computation accomplished by the tRNA molecules ends at the stop
codon UAA so that the gene of interest will not be translated:

5′ − AAG GUA AGGU AAG GUA UAA AGG Z1 . . .Zw − 3′

3′ − UUC︸︷︷︸ CAU︸︷︷︸ UCCA︸ ︷︷ ︸ UUC︸︷︷︸ CAU︸︷︷︸

♦
Theorem 7.18. Let M be the finite automaton in Figure 6.23. In view of
the given encodings of states and transitions of M , a string is accepted by M
if and only if the gene of interest is translated.

Proof. Let k ≥ 0 be an integer and let m be the length of the gene of interest.
First, the accepted string a2k has encoding length k · 10 + 6 + m, and the
sequence of tRNA molecules (T1T2T3)k translates the first k(3+3+4) = k·10
bases. But the stop codon starts at the second position in the appended
strand of length 6. Hence, the stop codon is not in phase and thus will not
be translated.

Second, the non-accepted string a2k+1 has encoding length (k · 10 + 5) +
6 + m, and the sequence of tRNA molecules (T1T2T3)kT1T2 translates the
first k(3+3+4)+3+3 = k ·10+6 bases. Thus, the first base in the appended
strand is translated by the last tRNA molecule T2. Hence, the next translated
codon is the stop codon.

Third, consider an arbitrary string containing the symbol b. This symbol
has encoding length 5 and is processed by M in state s0 or s1 without leav-
ing the state. The tRNA molecules corresponding to these transitions have
encoding length 5, too. Therefore, the translation of the symbol b leaves the
phase invariant. �

During translation, tRNA molecules with anti-codons longer than three
bases (e.g., 3′ − UCCA− 5′), will eventually compete with naturally occurring
tRNA molecules whose anti-codons are prefixes (e.g., 3′−UCC−5′), encoding
the amino acid glycine. Hence, the success of a computation in this model cru-
cially depends on the concentration of available tRNA molecules. The exper-
iments showed that a computation by a single E. coli cell is not effective and
accurate, while a colony of E. coli cells provides more reliable computations.
Since bacterial cells can multiply to over a million cells overnight, these in
vivo computations might offer a massive amount of parallelism.

7.4 Anti-Sense Finite State Automata

Finite state automata operating autonomously at the molecular scale can be
used conceptually for applications in the living cell. This was first demon-
strated by E. Shapiro and coworkers (2004), who built a small finite state
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automaton from DNA strands and enzymes. This automaton uses anti-sense
technology to carry out molecular diagnosis and therapy.

7.4.1 Basic Model

The Shapiro automaton model can, in principle, be used to construct molec-
ular automata that control drug release. The input of such an automaton is
given by a combination of molecular indicators given by mRNA molecules
at specific levels, and the output provides a drug in the form of an oligonu-
cleotide. The automaton has two states: yes (y) and no (n). The computation
starts in the state y and if it ends in that state, the result is a positive diag-
nosis; otherwise, it is a negative diagnosis. The diagnosis is established by
a series of transitions and each transition tests for high or low levels of a
particular indicator (Fig. 7.19). Once the automaton enters the state n, it
remains in this state for the duration of the computation.

The computation is purely stochastic, since the transitions are sensi-
tively controlled by the concentrations of the indicators. A present indica-
tor increases the probability of a positive transition by the corresponding
molecular indicator and decreases the probability of its competing negative
transition, and vice versa if the indicator is absent.

Fine control over the diagnosis is attained by administering a biologically
active molecule on a positive diagnosis, and its suppressor molecule on a
negative diagnosis. Because a single molecular automaton of Shapiro type
cannot perform this task, two automata are employed. One releases a drug
molecule on a positive diagnosis and the other administers a drug-suppressor
molecule on a negative diagnosis. The ratio between drug and drug-suppressor
released by a population of automata of the two types determines the final
active drug concentration.

start
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absent ��

��
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Fig. 7.19 Transition diagram of diagnostic automaton.
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7.4.2 Diagnostic Rules

Diagnostic rules encode medical knowledge and are given by an if–then state-
ment; this if–then mechanism is a new element of molecular computation.
The corresponding Boolean expression consists of a conjunction of molecular
indicators, and if this expression becomes “true” then an anti-sense drug is
released. This drug is designed to prevent the expression of a certain gene.
For this, the drug specifically binds to an mRNA strand of the gene and
thereby inhibits its translation into a protein.

Example 7.19. The diagnostic rule for prostate cancer states that if the genes
ppap2p and gstp1 are underexpressed and the genes pim1 and hpn are over-
expressed, then the anti-sense oligonucleotide 5′− GTTGGTATTGCACAT− 3′ for
the gene mdm2 is administered. The gene mdm2 is an important negative
regulator for the p53 tumor suppressor protein. The p53 protein (also TP53)
is a crucial transcription factor participating in the regulation of the cell
cycle. It acts as a tumor suppressor by preventing mutations in the genome.
For this, p53 directs mutated sequences for repair or induces programmed
cell death (apoptosis), thus preventing damaged DNA to propagate in the
cell.

The diagnostic rule for small cell lung cancer states that if the genes
ascl1, gria2, insm1, and pttg are overexpressed, then the anti-sense strand
5′ − TCTCCCAGCGTGCGCCAT− 3′ (oblimersen) is released. ♦

7.4.3 Diagnosis and Therapy

This kind of diagnostic rule might be implemented by the molecular automa-
ton model described in Section 6.2.1. This model contains diagnostic
molecules that encode diagnostic rules, transition molecules that realize
automaton transitions, and hardware molecules given by the restriction
enzyme FokI.

A diagnostic rule is encoded by a DNA molecule that consists of a diagnos-
tic moiety and a drug-administering moiety. The diagnostic moiety encodes
the indicators of the corresponding diagnostic rule by a double-stranded DNA
molecule. The indicators correspond to the automaton’s symbols, and the
automaton computes the diagnostic moiety symbol by symbol (Fig. 7.20).

Each indicator is realized by a pair of competing transition molecules. For
instance, the indicator for the overexpressed gene pim1↑ gives rise to two
transition rules, which are realized by double-stranded DNA molecules. The

transition rule y
pim1↑
−→ n is initially active that is able to interact with the

diagnostic moiety. However, if the concentration of the mRNA molecules for
the pim1 gene is high, then a single strand of the transition molecule displaces
it with an mRNA strand. This displacement process is thermodynamically
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y ppap2b↓ gstp1↓ pim1↑ hpn↑

y gstp1↓ pim1↑ hpn↑

Fig. 7.20 Encoding of a diagnostic rule for the gene mdm2 given by a diagnostic
moiety (stem) and a drug-administering moiety (loop). The transition step involves

the diagnostic moiety and an active transition rule y
ppap2b↓
−→ y.

favorable because of the higher complementarity between transition strand
and mRNA. The resulting DNA/mRNA hybrid complex will be degraded in
the cell by the endonuclease RNase H, which catalyzes the cleavage of the
involved RNA. Hence, the gene will not be translated (Fig. 7.21).

The transition rule y
pim1↑
−→ y is initially inactive and therefore not able

to interact with the diagnostic moiety. This transition molecule contains a

transition molecule (active)

3’ 5’
5’ 3’

AGC

TCG

+
mRNA
3’ 5’

TCA

�

transition single strand

3’ 5’
AGC

+

5’ 3’
TCG

3’ 5’
TCA

DNA/RNA complex

Fig. 7.21 Strand displacement among active transition molecule y
pim1↑
−→ n and

mRNA.
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mismatch region (internal loop) and there is an oligonucleotide that fully com-
plements one strand of the transition molecule. If the concentration of the
mRNA molecules for the pim1 gene is high, then a single strand of the tran-
sition molecule displaces the mRNA strand, and the other strand hybridizes
with the fully complementary oligonucleotide. This displacement process
is thermodynamically favorable, due to the higher complementarity among
transition strands, oligonucleotide, and mRNA. The resulting DNA/mRNA
hybrid complex is not a viable structure and will be degraded in the cell by
the endonuclease RNase H. Moreover, strand displacement provides an active

transition molecule y
pim1↑
−→ y that is able to interact with the diagnostic moi-

ety (Fig. 7.22). Ideally, one pim1 mRNA molecule inactivates one transition

molecule y
pim1↑−→ n and activates one transition molecule y

pim1↑−→ y.
An underexpressed gene gstp↓ also gives rise to two transition rules. Now,

however, the transition rule y
gstp↓
−→ y is initially active, while the transition

rule y
gstp↓
−→ n is initially inactive.

When all symbols are processed, the drug-administering moiety will be
processed, too. This moiety consists of a double-stranded stem that contains

transition molecule (inactive)
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5’ 3’

GTT

AGC

+
mRNA
5’ 3’

TCA

+
oligonucleotide

3’ 5’
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�

transition molecule (active)

3’ 5’
5’ 3’

CAA

GTT

+

AGC
3’ 5’

5’ 3’
TCA

DNA/RNA complex

Fig. 7.22 Strand displacement among inactive transition molecule y
pim1↑
−→ y,

oligonucleotide, and mRNA.
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a single-stranded loop, which hosts a drug or drug-suppressor. The loop pro-
tects the drug or drug suppressor from unwanted interaction with the target
mRNA. In view of a positive diagnosis, the stem of the drug moiety is cleaved
and the drug is released, while the stem of the drug suppressor moiety remains
intact, protecting the drug suppressor. The situation is reversed in the case
of a negative diagnosis.

Each molecular automaton autonomously performs a stochastic computa-
tion, and multiple automata operate in parallel carrying out the same task
within the same environment and without mutual interference. The behav-
ior of these automata largely depends on the concentrations of the involved
molecules and the fidelity of the strand displacement processes. Unfortu-
nately, the specific mechanism proposed would not work in a living cell since
unwanted side effects of the FokI enzyme would be a major problem. Nev-
ertheless, the work can be considered to be a big conceptual step forward
linking molecular automata to anti-sense technology.

7.5 Computational Genes

Computational genes provide another type of finite state automata, which
autonomously operate at the molecular scale. Computational genes invented
by the authors (2007) are able to detect and correct aberrant molecular phe-
notype given by mutated genetic transcripts.

7.5.1 Basic Model

A computational gene is a molecular automaton that consists of a structural
and a functional moiety and is supposed to work in a cellular environment.
The structural part is a naturally occurring gene or operon that is used as a
skeleton to encode a drug such as a protein or peptide. The latter comprises
the functional part of a computational gene (Fig. 7.23).

structural
gene

		���������

functional
gene

��"""""""""

computational
gene

Fig. 7.23 Moieties of computational gene.
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In a computational gene, the structural gene translates into a gene product
that provides the functional gene. To this end, the conserved features of a
structural gene serve as constants of a computational gene. These include the
promoter of the structural gene, including the RNA polymerase binding site;
start and stop codons; and the splicing sites, which control and ensure the
smoothness of the splicing process. On the other hand, the coding regions,
the number of exons and introns, the position of the start and stop codons,
and the automata theoretic variables (symbols, states, and transitions) are
the design parameters of a computational gene. The constants and design
parameters are linked by several logical and biochemical constraints. For
instance, encoded automata theoretic variables must not be recognized as
splicing junctions.

The input of a computational gene are molecular markers given by single-
stranded DNA molecules. These markers signalize aberrant molecular phe-
notypes, which turn on the self-assembly of the functional gene. If the input
is accepted, the output encodes a double-stranded DNA molecule, a func-
tional gene, which should be successfully integrated into the cellular tran-
scription and translation machinery. Otherwise, the output is a partially
double-stranded DNA molecule that cannot be recognized by a translation
system.

Example 7.20. The computational gene ID1-CDB3 is based on the human
inhibitor of DNA binding 1 (ID1) gene as a structural gene that encodes the
CDB3 peptide as a functional gene. The ID1 gene (155 aa) is responsible for
the production of the ID1 inhibitory protein, which regulates tissue-specific
transcription with several cell lines and contributes to cell growth, senescence,
differentation and angiogenesis. It is comprised of two exons (452 bp and
115 bp) separated by an intron (239 bp). The peptide CDB3 (9 aa) can bind
to the tumor suppressor protein p53 core domain and stabilize its fold.

In view of the implementation of the computational gene ID1-CDB3,
the CDB3 drug given by the amino acid sequence REDEDEIEW-NH2 should
be encoded along two exons, but not by the first exon alone. The latter
would allow the synthesis of CDB3 without making use of the diagnostic rule
(Fig. 7.27). According to the genetic code, R ∈ {AGA, AGG, CGA, CGC, CGG, CGT},
E ∈ {GAA, GAG}, D ∈ {GAC, GAT}, I ∈ {GAA, GAG}, and W ∈ {TGG}. Hence,
the number of DNA strings to encode CDB3 is given by 6× 2× 2× 2× 2×
2 × 3 × 2 × 1 = 1152 encoding sequences. From this pool, those sequences
must be eliminated that do not satisfy the necessary logical and biochemical
constraints. In particular, a valid DNA encoding sequence must contain the
5’-splicing site region of the first exon (AG) and the 3’-splicing site region of
the second exon (G) so that the spliced product of both exons contains the
corresponding string AGG in the transcript. Three possible encoding options
are shown in Table 7.3.

An encoding sequence is considered to be optimal if the sequence satisfies
all restrictions and minimizes the number of mutations required to encode the
functional gene by the structural gene. Such an optimal string may be found
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Table 7.3 Three DNA encoding strings for the CDB3 drug along two exons. Under-
lined nucleotides describe the CDS region of the first exon and non-underlined
nucleotides mark the CDS region of the second exon.

W E I E D E D E R

CDB3 Trp Glu IIe Glu Asp Glu Asp Glu Arg

1 TGG GAA ATA GAG GAC GAA GAC GAA AGA

2 TGG GAG ATA GAG GAC GAG GAC GAA CGC

3 TGG GAA ATA GAA GAC GAA GAC GAA AGG

by site-directed mutagenesis (e.g., the second encoding string in Table 7.3
requires 17 mutations to encode CDB3 via the ID1 gene (Table 7.4)). ♦

A computational gene is formally defined as a finite state automaton whose
language is given by those double-stranded DNA molecules that are recog-
nized as genes by the translation machinery. In view of Theorem 6.3, linear
self-assembly is equivalent to regular languages. Moreover, by Theorem 2.47,
regular languages are exactly those languages that are accepted by finite state
automata. Therefore, we can expect that computational genes construct func-
tional genes by linear self-assembly. A functional gene can in principle pro-
duce any protein without size restriction, as the underlying structural gene
is being recognized by the translation system.

7.5.2 Diagnostic Rules

A single disease-related mutation can be diagnosed and treated by the diag-
nostic rule

if geneX mut at codon Y then produce drug fi . (7.11)

Table 7.4 Required mutations to encode CDB3 sequence 2 (Table 7.3) by the ID1
gene. Underlined nucleotides represent mutations to be made in ID1. The CDB3
string is enclosed by the start and the stop codon.

Gene/Drug First Exon String Second Exon String

ID1 ATCAGCGCCCTGACGGCCGAG GCGGCATGCGTT

CDB3 ATGTGGGAGATAGAGGACGAG GACGAACGCTGA
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This rule allows the suppression of a pathogenic phenotype and the expres-
sion of the wild-type protein or a drug, and thus the restoration of the phys-
iological functionality of the wild-type. The rule (7.11) can be implemented
by a two-state, one-symbol automaton. The input symbol corresponds to the
mutation in question. If the input symbol is present, the automaton switches
over from the initial into the final state. The automaton can be realized by
two partially double-stranded DNA molecules and one single-stranded DNA
molecule that corresponds to the input symbol. If the mutation is present, the
three molecules self-assemble into a double-stranded molecule that encodes
the drug (Fig. 7.27).

Example 7.21. For instance, a mutation at codon 249 in the tumor suppressor
p53 protein is characteristic for hepatocellular cancer, and the CDB3 peptide
can bind to the p53 core domain and stabilize its fold. The corresponding
diagnostic rule is given by

if p53 mut at codon 249 then produce CDB3 fi . (7.12)

♦
The diagnostic rule (7.11) can be generalized so that it corresponds to

finite number of disease-related mutations,

if geneX mut at codonY1 ∧ . . .∧ geneX mut at codonYn

then produce drug fi . (7.13)

This rule can be implemented by an n + 2-state, n-symbol automaton,
where the input symbols are associated with the mutations (Fig. 7.24). If the
ith mutation is present, the automaton passes from the i−1-th state into the
i-th state. The automaton can be realized by two partially double-stranded
DNA molecules, oligonucleotides related one-to-one with the mutations, and
further (complementary) oligonucleotides necessary for linear self-assembly.
A functional gene will be self-assembled if and only if the n-th (final) state
is reached, that is, all n diagnosed mutations are present.

The rule (7.13) may be generalized to involve mutations from different
genes, allowing a combined diagnosis and therapy. Furthermore, computa-
tional genes are extendable to prokaryotic genes evidencing the generality
of the principle. A prokaryotic model could release several different output
molecules in response to different environmental conditions, facilitating even
more complex computations (Fig. 7.25).
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Fig. 7.25 Prokaryotic computational gene.

7.5.3 Diagnosis and Therapy

Computational genes specifically combine the techniques of gene therapy and
gene silencing. To see this, observe that in order to process the diagnostic
rule (7.11) or (7.13), the molecular automaton must be able to detect point
mutations. This task is based on a diagnostic complex, a double-stranded
DNA molecule, whose single-stranded constituents are termed mutation sig-
nal and diagnostic signal. The signals are not completely complementary
to each other: they imperfectly pair in a region that resembles an aberrant
mutation to be detected. In this case, an mRNA molecule bearing the corre-
sponding mutation will trigger the dissociation of the diagnostic complex and
will perfectly pair with the mutation signal, while the diagnostic signal will be
released (Fig. 7.26). This strand displacement process is thermodynamically
favorable due to full complementarity between mutation signal and mRNA.
The resulting DNA/RNA hybrid complex will be degraded in the cell by the
endonuclease RNase H.

The released diagnostic signal provides input to the computational gene
and thus contributes to the self-assembly of the functional gene, whose struc-
ture is completed by cellular ligase present in both eukaryotic and prokaryotic
cells (Figs. 7.27 and 7.28). The transcription and translation machinery of
the cell is then in charge of therapy, administering the drug encoded by the
functional gene.

Example 7.22. The computational gene ID1-CDB3 can be used to imple-
ment the diagnostic rule (7.12). This requires two partially double-stranded
molecules, the first of which contains the promoter and the second of which
encodes the CDB3 peptide. Here, the diagnostic signal simply provides a
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diagnostic complex
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+
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TTA
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DNA/RNA complex

Fig. 7.26 Diagnosis: Diagnostic DNA complex with codon mismatch (internal loop)
and mutated mRNA provide a partially double-stranded DNA/RNA molecule given
by pairing of mRNA with the mutation signal, while the diagnostic signal is released.

molecular switch that turns on the self-assembly of the functional gene
(Fig. 7.27). ♦

Computational genes might allow the detection of disease-related muta-
tions as soon as they emerge in the cell, and to administer an output that

diagnostic signal

5’ 3’

+
DNA molecules

�

double-stranded DNA molecule

Fig. 7.27 Therapy: The released diagnostic signal activates the spontaneous self-
assembly of a double-stranded DNA molecule via annealing and ligation.
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diagnostic signals

+
DNA molecules

�

double-stranded DNA molecule

Fig. 7.28 Therapy: The released diagnostic signals based on two mutations activate
the spontaneous self-assembly of a computational gene via annealing and ligation.

simultaneously suppresses the aberrant disease phenotype and restores the
lost physiological function. Hence, computational genes might provide ther-
apy in situ when the cell starts developing defective material. In view of the
in vivo application of computational genes, the hurdles are similar to those
in gene therapy (i.e., the internalization of the computational gene software
into the cell, its longevity and stability, and its integrity in the cell).

Concluding Remarks

DNA models for understanding and manipulating cellular behavior are gen-
erally invaluable. However, several issues need to be addressed before cellular
DNA models can be implemented in vivo. First, the DNA material must be
safely internalized into the cell, specifically into the nucleus. In particular,
the transfer of DNA or RNA through the biological membranes is a key step
in drug delivery. Second, the DNA complexes should have low immunogenic-
ity to guarantee their integrity in the cell and their resistance to cellular
nucleases. Current strategies to eliminate nuclease sensitivity include mod-
ifications of the oligonucleotide backbone, but along with increased stabil-
ity, modified oligonucleotides often have altered pharmacological properties.
Third, similar to other drugs, DNA complexes could cause non-specific and
toxic side effects. In vivo applications of anti-sense oligonucleotides showed
that toxicity is largely due to impurities in the oligonucleotide preparation
and lack of specificity of the particular sequence used. Undoubtedly, progress
in anti-sense technology would also result in a direct benefit to cellular DNA
computing.
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DNA automaton, 194–207
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length-encoding, 198–200
Shapiro, 194
sticker, 200–206
stochastic, 207

DNA block code, 100
DNA chip, 136

intelligent, 137
universal, 137

DNA code, 99
DNA coded number, 137
DNA crossover, 81
DNA graph, 182

annealing, 183
denaturation, 183
ligation, 183

DNA language, 99
DNA lattice, 236
DNA ligase, 60
DNA nanotechnology, 5
DNA percetron, 224–226
DNA polymerase, 59
DNA recombination, 80–81
DNAse, 119
DNF, 136
domain, 249
double loop recombination, 247
double strand, 58
double-crossover molecule, 186–187
Drexler, E., 1, 3
duplex, 65
DX molecule, 186, 236

edge, 9
end-vertex, 9
multiple, 10

edge-dominating set, 53
edit distance, 101
effector, 89
electron charge, xii
electron mass, xii
elementary operation, 49
endomembrane system, 92
endoplasmic reticulum, 93
enthalpy, 63
entropy, 63
enzymatic conversion, 90
enzyme, 88–92
enzyme kinetics, 90–92
enzyme thermodynamics, 92
equilibrium constant, 92
Escher, M.C., 39
Escherichia coli, 82, 261
eukaryotes, 93–94

even component, 111
exchange, 176
exclusive OR, 46, 192
exon, 79
exonuclease, 60, 136
extract, 126

Fano condition, 183
Feynman, R., 1, 123
filtering model, 127

blocking, 133
computation, 125
mark-and-destroy, 129
memory-based, 128
memory-less, 125, 127
split-and-merge, 131
surface-based, 135
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cell-based, 261–264
deterministic, 18
non-deterministic, 19
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therapeutic, 264–269

firing squad problem, 191
first reaction method, 75–76
Fischer, E., 89
flip, 128
floating molecule, 236
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fluorescence, 227
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foldback structure, 59
forest, 14
frameshift, 79
free energy constraint, 99
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function
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futile reaction, 238

gambler’s ruin problem, 166
Game of Life, 32
gas constant, xii, 66
GC-content, 100
gene, 79

expression, 82–92
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gene assembly, 244
gene expression diagnosis, 226
gene silencing, 261
gene splicing, 79
gene therapy, 258–259
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Golgi-body, 93
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hairpin freedom problem, 221
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reverse-complement, 100

Hamming similarity, 102
Hamming weight, 111
handshaking, 10
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head, 25
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Hicks, D., 63
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human immunodeficiency virus (HIV),
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hybridization, 59, 65, 68
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IES, 245
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indegree, 13
indel, 101
independent error model, 192
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induced fit, 89
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initiation protein, 59
initiator, 201
insertion, 79
instruction, 31
integration, 175
internal loop, 78, 268, 274
internally eliminated sequence (IES),

245
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involution, 249

anti-morphic, 17
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denaturation, 183
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strict, 106
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hidden, 223
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leading strand, 58
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length-separate, 125
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Levenshtein, V., 101, 120
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ligase, 227
liposome, 259
Lipton’s first paper, 126–127
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DNA, 232, 234–235
logic gate, 40

DNA, 227–229, 233–234
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loop, 10
loop recombination, 247

Müller, R., vi
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245
macronucleus, 244
mark, 135, 136
marker, 136
Martinez-Perez, I., 142
master equation, 70–72
matching, 53
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mathematical notation, xi
maximum clique problem, 129
maxterm, 44
MAYA, 232
McCulloch, W., 222
mdm2, 266
MDS, 245
mean, 70
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melting, 65
melting temperature, 65
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memory complex, 138
memory strand, 138
Menten, M., 90
merge, 126, 139
messenger RNA, 77
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Michaelis complex, 90
Michaelis constant, 90
Michaelis, L., 90
Michaelis-Menten equation, 91
microarray, 226
micronucleus, 244
Mills Jr, A., 222
minterm, 44
mirror involution, 18
mitochondria, 93
MLP, 223

L-layered, 223
mol, xii
molarity, xii
mole, xii
molecular beacon, 227
molecular diagnosis, 137
moment, 70
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multiplicity, 171, 257
multiset, 10
Mung Bean nuclease, 203
mutation signal, 273
Myhill, J., 191

N-terminus, 85
NADH, 89
NAND gate, 42
nanolithography, 1
nanotechnology, 1–2

DNA, 5
molecular, 1
near-term, 1

native conformation, 87
nearest neighbor model, 63
negation, 40
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neighborhood, 252
neural networks, 222–226

artificial, 222–224
non-terminal symbol, 33
non-Watson-Crick pairing, 100
NOR gate, 42
normal form

conjunctive, 52
conjunctive canonical, 45
disjunctive, 136
disjunctive canonical, 45

NOT gate, 40, 261
DNA, 227, 234

NP-complete, 52
NP-hard, 54
nuclear envelope, 93
nucleobase, 57
nucleoid, 93
nucleus, 93
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odd component, 111
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one-shot Boolean expression, 207
operon, 79
optimization problem, 54
OR gate, 40, 261

DNA, 234
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organelle, 81, 92
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Ouyang, Q., 129

overlap, 250
Oxytricha

see Sterkiella, 244

p53, 266
Păun, G., 171
pad, 191

mismatch rate, 192
palindromic region, 214
parallel application, 254
parallel overlap assembly, 62
Paramecium, 245
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language, 25
stochastic, 24

Pascal library, 141
path, 11

length, 11
simple, 11

PCP, 38
solution, 38

PCR, 61–62, 107, 125
inhibition, 134

peptide bond, 85
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phosphate group, 57
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point mutation, 79
pointer, 246, 250
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polymerase chain reaction, 61
polymerization stop, 207, 209
polynomial transformation, 51
Post’s correspondence problem, 38
Post, E., 38
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postfix-extract, 125
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prefix-extract, 125
primary protein sequence, 85
primer, 61
probability density function, 70

reaction, 72
probability distribution, 23

conditional, 23
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production rule, 33
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prostate cancer, 266
prosthetic group, 89
purine, 57
pyrimidine, 57

quantum dot, 2
quaternary structure, 88
quencher, 227
quenching, 119

random coding bound, 115
random selection, 117–119
rate constant, 66
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reverse, 68

RC code, 109
reactant, 66
reaction constant, 71
reaction rate, 66
reaction-rate equation, 66, 67
reading frame, 79
recombinant system, 176
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register machine, 31
regular expression, 21
Reif, J.H., 192, 235
remove, 129
repressor, 79
restriction endonuclease, 60
restriction site, 60
retrovirus, 95, 96, 258
reverse code, 109
reverse complementarity involution, 18
reverse transcriptase, 119, 226
reverse transcription, 95
reverse-complement code, 109
RheoGene Inc., 175
ribosome, 83, 84
RISC, 261
RNA, 77
RNA interference, 260–261
RNA polymerase, 77
RNAi, 260
RNase H, 132, 267, 268, 273
root-mean-square deviation, 70
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Rothemund, P., 194
Rozenberg, G., 133, 247, 250, 253
rRNA, 77
rule molecule, 236
runtime, 48

S1 nuclease, 203
Saccharomyces cerevisiae, 260
Sakakibara, Y., 136, 198, 261
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SAT, 52

3-SAT, 52
satisfiability problem, 52

3-SAT, 52
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Savageau, M., 92
Scharrenberg, O., 142
Schnell, S., 92
seed set, 118
seed tile, 188
Seeman, N., 5, 185, 186
selection model

RNA, 119
SELEX, 260
self-assembly, 5, 181–193

linear, 184
semi-decidable, 38
separate, 128, 139, 140

compound, 166
set, 139, 140

independent, 51
set cover, 53, 150
sexual reproduction, 243, 244
Shapiro, E., 194, 207, 264
Sierpinsky triangle, 188, 192
sigmoid function, 223
signal restoration, 235
signed alphabet, 249
signed string, 249
silent mutation, 79
similarity function, 102
similarity measure, 101–104
single strand, 58
siRNA, 260
size, 9

automaton, 18
small cell lung cancer, 266
Smith, L., 135
Smolke, C., 259
spacer, 201, 218, 262
spacer sequence, 198
spanning tree, 15
specificity constant, 91
Spichotrich, 245
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spliceosome, 79
splicing, 169
splicing rule, 170
splicing system, 170, 257

language, 171
split, 132
start symbol, 33
state, 18, 19, 25

final, 18, 19, 25
initial, 18, 19, 25

state register, 25
Stefanovic, D., 226
Steiner system, 111
Steiner tree, 54
Stentor, 243
Sterkiella, 244, 245
Sterkiella histriomuscorum, 244
Sterkiella nova, 246
sticker, 200
sticker automaton, 200–206
sticker complexity, 140
sticker computation, 140
sticker machine, 138–140
sticker memory, 138
sticker operation, 139–140

clear, 139
discard, 139
merge, 139
separate, 139
set, 139

sticker strand, 139
sticker system, 138
Stojanovic, M., 226
stop codon, 82
stopper, 136
stopper sequence, 209
strand displacement, 68–69, 266, 268,

273
strength, 188
strictly, 106
string, 17

circular, 175
empty, 17
legal, 249
length, 17
strictly increasing, 141

string circular recombination, 247
string circular rule I, 256
string circular rule II, 256
string double rule, 251
string negative rule, 250
string parallel recombination, 247
string parallel rule, 256
string positive rule, 250

string reduction, 251
intermolecular, 257
intramolecular, 251
successful, 257

Stylonychia, 244
subgraph, 10–11

induced, 10
substitution, 79
substrate, 88
substring, 104

closure, 104
substring-extract, 125
successful strategy, 253
supramolecular complex, 181
Suyama, A., 136
symbol, 17

negative, 249
positive, 249

symbol molecule, 236
synthetic biology, 4

Taniguchi, N., 1
tape, 25
template strand, 77
terminal symbol, 33
terminator sequence, 77, 201
tertiary structure, 87
test tube, 125

data, 140
final, 125, 140
initial, 125, 140
separation operator, 140
sticker, 140

threshold gate, 235
threshold value, 24
thymidine, 57
thymine, 57
tic-tac-toe, 230
tic-tac-toe network, 226–232
tile, 186
tile assembly model, 185–193

Boolean array, 191–192
error model, 192

tiling, 39
tiling problem, 39
time complexity, 48–49
toehold, 233
toehold kinetics, 232–233
transcription, 77
transfection, 2
transformation, 2
transition function, 18, 19, 26

extended, 19, 20
transition molecule, 266
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transition rule, 26
translation, 77, 83
translator gate, 234
transpeptidation, 85
travelling salesman problem

see Hamiltonian path problem, 6
tree, 14–15
tRNA, 77, 83
tube, 125
Turberfield, A.J., 232
Turing computable, 29
Turing machine, 6, 25

ith, 36
DNA, 235–239

Turing reduction, 54
Turing, A., 25, 27, 48
turn, 86
Turner, T., 92
Tyagi, S., 227

U-complement, 252
Ulam, S., 31
undecidability, 36–39
unit function, 40
universal machine, 27
unmark, 135
uracil, 77

vector, 258
vertex, 9

final, 11, 123

initial, 11, 123, 214
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positive, 252

vertex coloring, 53
vertex cover, 52, 151
vertex template, 218
viral therapy, 95
virion, 94
virus, 94–97, 258
vitravene, 259
von Neumann, J., 31

Wang tile, 39, 187
Wang, H., 39
Watson-Crick

base pair, 18, 58, 100
involution, 18
subgraph, 183

whiplash PCR, 207–211
Winfree, E., 181, 185, 191, 207, 232
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Wolfram, S., 29
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YES gate
DNA, 227
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zero function, 40
Zimmermann, K.-H., 141, 142
zip-code, 107
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